
10.1 (Y Y) Works!Copyright c 1991 by Matthias Felleisen and Daniel P. FriedmanDraft: September 26, 1991

2 A Lecture on the Why of Yby Matthias Felleisen

0.1. (Y Y) WORKS! 3Is this the function length?(de�ne length(lambda (l)(if (null? l) 0(add1 (length (cdr l)))))) It sure is.Suppose (de�ne) no longer works.Can you describe in your own words whatlength does? For one, the body of length cannot refer tolength.Then we might as well write something likethis.(de�ne length(lambda (l)(if (null? l) 0(add1 (hukairs (cdr l)))))) Yes, except that (de�ne) doesn'twork anymore.So perhaps something more like this?(lambda (l)(if (null? l) 0(add1 (hukairs (cdr l))))) Yes, that's better.But what happened to the function? It is no longer recursive.And what does it do? It measures the length of the empty list andnothing else.And what does huhairs do? Who cares. The function doesn't work fornon-empty lists in any case.Suppose we could name this new function.What would be a good name? We think length0 is great because thefunction only measures lists of length 0.

4How would you write a function thatmeasures the length of lists that contain oneitem? Well, we could try the following.(lambda (l)(if (null? l) 0(add1 (length0 (cdr l)))))Almost, but (de�ne) doesn't work forlength0. So? Replace length0 by its de�nition.(lambda (l)(if (null? l) 0(add1((lambda (l)(if (null? l) 0(add1 (hukairs (cdr l)))))(cdr l)))))And what's a good name for this function? That's easy: length1.Is this the function that would measure thelenght of lists that contain two items?(lambda (l)(if (null? l) 0(add1((lambda (l)(if (null? l) 0(add1((lambda (l)(if (null? l) 0(add1(hukairs(cdr l)))))(cdr l)))))(cdr l)))))
Yes, this is length2. We just expand the callto hukairs to get the next version of length.

Now, what do you think recursion is? What do you mean?

0.1. (Y Y) WORKS! 5Well, we have seen how to measure the listwith no items, with one item, with two, andso on. How could we get the function lengthback? If we could write an in�nite function, wecould write length1.But we can't write an in�nite function. And we still have all these repetitions andpatterns in these functions.All these programs contain a function thatlooks like length, and that's not right. No, let's abstract out these patterns.Is this the right way to rewrite length0 sothat length reappears?((lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l))))))hukairs) It's worth a try.
Rewrite length1 in the same style. ((lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l))))))((lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l))))))hukairs))

6And length2. ((lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l))))))((lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l))))))((lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l))))))hukairs)))Close, but there are still repetitions. True. Let's get rid of them.Where should we start? Name the function that takes length as anargument and that returns a function thatlooks like length.What's a good name for this function? What about mk-length for \make length"?Ok, do this to length0. No problem.((lambda (mk-length)(mk-length hukairs))(lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l)))))))

0.1. (Y Y) WORKS! 7Is this length1?((lambda (mk-length)(mk-length(mk-length hukairs)))(lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l))))))) It sure is. And this is length2.((lambda (mk-length)(mk-length(mk-length(mk-length hukairs))))(lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l)))))))Can you do length3? Here we go.((lambda (mk-length)(mk-length(mk-length(mk-length(mk-length hukairs)))))(lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l)))))))So what is recursion? It is like an in�nite tower of applications ofmk-length to an arbitrary function.Do we really need an in�nite tower? Not really of course. Everytime we use lengthwe only need a �nite number, but we neverknow how many.Could we guess how many we need? Sure, but we may not guess a large enoughnumber.When do we �nd out that we didn't guess alarge enough number? When we apply the function hukairs that ispassed to the �rst mk-length.What if we could create another applicationof mk-length to huhairs at this point? That would postpone the problem by one,and besides, how could we do that?

8Well, since nobody cares what function wepass to mk-length, we could pass it mk-lengthinitially. That's the right idea. And then we invokemk-length on huhairs and the result of thison the cdr so that we get one more piece ofthe tower.Then this is still length0?((lambda (mk-length)(mk-length mk-length))(lambda (mk-length)(lambda (l)(if (null? l) 0(add1 (mk-length (cdr l))))))) Yes. And when we apply mk-length once, weget length1.((lambda (mk-length)(mk-length mk-length))(lambda (mk-length)(lambda (l)(if (null? l) 0(add1 ((mk-length hukairs)(cdr l)))))))Could we do this more than once? Yes, just keep passing mk-length to itself,and we can do this as often as we need to!What would you call this function?((lambda (mk-length)(mk-length mk-length))(lambda (mk-length)(lambda (l)(if (null? l) 0(add1 ((mk-length mk-length)(cdr l))))))) It is length, of course.
Except that it no longer contains thefunction that looks like length. Can we �xthat? We could extract the self-application ofmk-length and call it length.Why? Because it really makes the function length.But (mk-length mk-length) is not a function.It only returns a function. So what do we do?

0.1. (Y Y) WORKS! 9Make the self-application of mk-length into afunction. No problem, we just use the old trick ofwrapping a lambda around the application.After all, the self-application does return afunction!Which function? The function length. Remember?Ok, do it! ((lambda (mk-length)(mk-length mk-length))(lambda (mk-length)(lambda (l)(if (null? l) 0(add1((lambda (x)((mk-length mk-length) x))(cdr l)))))))Move out the new function so that we getlength back. ((lambda (mk-length)(mk-length mk-length))(lambda (mk-length)((lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l))))))(lambda (x)((mk-length mk-length) x)))))Is this ok to do? Yes. Think about it. We always did thereverse: When we knew what the argumentto a function was, we proceeded with thefunction body and used the argument valuewhenever we saw the parameter name.Can we extract the function that looks likelength and give it a name? Yes, it does not depend on mk-length at all!

10Is this the right function?((lambda (le)((lambda (mk-length)(mk-length mk-length))(lambda (mk-length)(le (lambda (x)((mk-length mk-length) x))))))(lambda (length)(lambda (l)(if (null? l) 0(add1 (length (cdr l)))))))
Yes.

What did we actually get back? We extracted the old function mk-length!Let's separate the function that makes lengthfrom the function that looks like length. That's easy.(lambda (le)((lambda (mk-length)(mk-length mk-length))(lambda (mk-length)(le (lambda (x)((mk-length mk-length) x))))))Does this function have a name? Yes, it is called the applicative-order Ycombinator. At least, when we rewrite it alittle bit.(de�ne Y(lambda (le)((lambda (f)(le (lambda (x) ((f f) x))))(lambda (f)(le (lambda (x) ((f f) x)))))))Does (de�ne) work again? Sure, now that we know what recursion is.

0.1. (Y Y) WORKS! 11Do you now know why Y works? Read this chapter one more time and youwill.Does (Y Y) work, too? And how it works!!!

