0.1 (Y Y) Works!

Copyright (C) 1991 by Matthias Felleisen and Daniel P. Friedman

Draft: September 26, 1991

A Lecture on the Why of Y by Matthias Felleisen

Suppose (define) no longer works. Can you describe in your own words what length does?

Is this the function length?

```
(define length
    (lambda (l)
        (if (null? l) 0
                (add1 (length (cdr l))))))
(define length
```

It sure is.

For one, the body of length cannot refer to length.

Then we might as well write something like this.

Yes, except that (define) doesn't work anymore.

```
(define length
    (lambda (l)
        (if (null? l) 0
            (add1 (hukairs (cdr l))))))
```

So perhaps something more like this?

```
(lambda (l)
    (if (null? l) 0
    (add1 (hukairs (cdr l)))))
```

Yes, that's better.

But what happened to the function? It is no longer recursive.

And what does it do?
It measures the length of the empty list and nothing else.

And what does huhairs do?
Who cares. The function doesn't work for non-empty lists in any case.

Suppose we could name this new function. What would be a good name?

We think length ${ }_{0}$ is great because the function only measures lists of length 0 .

How would you write a function that measures the length of lists that contain one item?

Well, we could try the following.

```
(lambda (l)
    (if (null? l) 0
    (add1 (lengtho (cdr l)))))
```

Almost, but (define) doesn't work for So? Replace length h_{0} by its definition. length ${ }_{0}$.

```
```

(lambda (l)

```
```

(lambda (l)
(if (null? l) 0
(if (null? l) 0
(add1
(add1
((lambda (l)
((lambda (l)
(if (null? l) 0
(if (null? l) 0
(add1 (hukairs $(c d r l)))))$
(add1 (hukairs $(c d r l)))))$
$(c d r l)))))$

```
```

 \((c d r l)))))\)
    ```
```

And what's a good name for this function? That's easy: length h_{1}.

Is this the function that would measure the lenght of lists that contain two items?

```
(lambda (l)
    (if (null? l) 0
    (add1
    ((lambda (l)
        (if (null? l) 0
            (add1
                        ((lambda (l)
                                (if (null? l) 0
                                    (add1
                                    (hukairs
                                    ( \((d r l))\) )))
            \((c d r l))\) ))
        \((c d r l)))))\)
```

Yes, this is length ${ }_{2}$. We just expand the call to hukairs to get the next version of length.

Well, we have seen how to measure the list with no items, with one item, with two, and so on. How could we get the function length back?

If we could write an infinite function, we could write length ${ }_{\infty}$.

But we can't write an infinite function.
And we still have all these repetitions and patterns in these functions.

All these programs contain a function that No, let's abstract out these patterns. looks like length, and that's not right.

Is this the right way to rewrite length so It's worth a try. that length reappears?

```
((lambda (length)
```

((lambda (length)
(lambda (l)
(lambda (l)
(if (null? l) 0
(if (null? l) 0
(add1 (length (cdr l))))))
(add1 (length (cdr l))))))
hukairs)

```
    hukairs)
```

 , let's abstract out these patterns.
 looks like length, and that's not right.
Is this the right way to rewrite leng
that length reappears?

| $(($ lambda $($ length $)$ |
| :---: |
| $($ lambda (l) |
| $($ if $($ null? $l) 0$ |
| $($ add 1 length $(c d r l))))))$ |
| hukairs $)$ |

Rewrite length h_{1} in the same style.

```
((lambda (length)
    (lambda ( \(l\) )
        (if (null? l) 0
        \((\) add1 (length \((c d r l))))))\)
((lambda (length)
    (lambda (l)
        (if (null? l) 0
        (add1 (length (cdr l))))))
    hukairs))
```

And length 2 .

```
((lambda (length)
    (lambda ( \(l\) )
        (if (null? l) 0
            (add1 (length \((c d r l))))))\)
((lambda (length)
    (lambda (l)
        (if (null? l) 0
            (add1 (length \((c d r l)))))\) )
    ((lambda (length)
        (lambda ( \(l\) )
        (if (null? l) 0
            (add1 (length \((c d r l))))))\)
    hukairs)))
```

Close, but there are still repetitions.

Where should we start?

True. Let's get rid of them.

Name the function that takes length as an argument and that returns a function that looks like length.

What's a good name for this function?

Ok, do this to length.$^{\text {. }}$

What about mk-length for "make length"?

No problem.
((lambda (mk-length)
(mk-length hukairs))
(lambda (length)
(lambda (l)
(if (null? l) 0
$($ add1 $($ length $(c d r l)))))))$

Is this length ${ }_{1}$?

```
((lambda (mk-length)
    (mk-length
        (mk-length hukairs)))
    (lambda (length)
    (lambda (l)
        (if (null? l) 0
            (add1 (length (cdr l)))))))
```

It sure is. And this is length 2 .

```
((lambda (mk-length)
    (mk-length
    (mk-length
        (mk-length hukairs))))
    (lambda (length)
    (lambda (l)
(if (null? l) 0
    (add1 (length (cdr l)))))))
```

Can you do length ${ }_{3}$?
Here we go.
((lambda ($m k$-length)
($m k$-length
(mk-length ($m k$-length (mk-length hukairs)))))
(lambda (length)
(lambda (l) (if (null? l) 0 (add1 (length $(c d r l))))))$)

So what is recursion?
It is like an infinite tower of applications of $m k$-length to an arbitrary function.

Do we really need an infinite tower?

Sure, but we may not guess a large enough number.

Not really of course. Everytime we use length we only need a finite number, but we never know how many.

Could we guess how many we need?

When do we find out that we didn't guess a large enough number?

When we apply the function hukairs that is passed to the first $m k$-length.

What if we could create another application of mk-length to huhairs at this point?

That would postpone the problem by one, and besides, how could we do that?

Well, since nobody cares what function we pass to $m k$-length, we could pass it $m k$-length initially.

That's the right idea. And then we invoke mk-length on huhairs and the result of this on the $c d r$ so that we get one more piece of the tower.

Then this is still length ${ }_{0}$?

```
```

((lambda ($m k$-length)

```
```

((lambda ($m k$-length)

```
    (mk-length mk-length))
```

 (mk-length mk-length))
    ```
    (mk-length mk-length))
    (lambda (mk-length)
    (lambda (mk-length)
    (lambda (mk-length)
        (lambda (l)
        (lambda (l)
        (lambda (l)
            (if (null? l) 0
            (if (null? l) 0
            (if (null? l) 0
            (add1 (mk-length (cdr l)))))))
```

```
```

 (add1 (mk-length (cdr l)))))))
    ```
```

```
            (add1 (mk-length (cdr l)))))))
```

```
```

 Yes. And when we apply \(m k\)-length once, we
 get length \({ }_{1}\).
    ```
((lambda ( \(m k\)-length)
    ( \(m k\)-length \(m k\)-length))
    (lambda (mk-length)
        (lambda ( \(l\) )
                (if (null? l) 0
                        (add1 ((mk-length hukairs)
                            ( \((d r l(l))))))\) )
```

Except that it no longer contains the function that looks like length. Can we fix that?

Could we do this more than once?
Yes, just keep passing $m k$-length to itself, and we can do this as often as we need to!

What would you call this function?

It is length, of course.

```
((lambda ( \(m k\)-length)
```

((lambda ($m k$-length)

```
((lambda ( \(m k\)-length)
    (mk-length mk-length))
    (mk-length mk-length))
    (mk-length mk-length))
    (lambda (mk-length)
    (lambda (mk-length)
    (lambda (mk-length)
    (lambda (l)
    (lambda (l)
    (lambda (l)
        (if (null? \(l\) ) 0
        (if (null? \(l\) ) 0
        (if (null? \(l\) ) 0
            (add1 ((mk-length mk-length)
            (add1 ((mk-length mk-length)
            (add1 ((mk-length mk-length)
                            \(((d r l)))))))\)
```

 \(((d r l)))))))\)
    ```
                            \(((d r l)))))))\)
```

Make the self-application of $m k$-length into a function.

No problem, we just use the old trick of wrapping a lambda around the application. After all, the self-application does return a function!

Which function?

Ok, do it!

The function length. Remember?

```
((lambda ( \(m k\)-length)
    ( \(m k\)-length \(m k\)-length))
    (lambda (mk-length)
    (lambda ( \(l\) )
        (if (null? l) 0
            (add1
                            ((lambda ( \(x\) )
                            (( mk-length mk-length) \(x)\) )
                            \((c d r l))))))\) )
```

Move out the new function so that we get length back.
((lambda (mk-length)
(mk-length mk-length))
(lambda (mk-length)
((lambda (length)
(lambda (l) (if (null? l) 0
(add1 (length $(c d r l)))))$)
(lambda (x)
$((m k-l e n g t h ~ m k-l e n g t h) x)))))$

Is this ok to do?
Yes. Think about it. We always did the reverse: When we knew what the argument to a function was, we proceeded with the function body and used the argument value whenever we saw the parameter name.

Can we extract the function that looks like length and give it a name?

Yes, it does not depend on mk-length at all!
\qquad

Is this the right function?
Yes.

```
( (lambda (le)
    ((lambda (mk-length)
            ( \(m k\)-length \(m k\)-length))
        (lambda (mk-length)
            (le (lambda ( \(x\) )
                    \(((m k-l e n g t h ~ m k-l e n g t h) x))))))\)
    (lambda (length)
    (lambda ( \(l\) )
            (if (null? l) 0
            \((a d d 1(\) length \((c d r l)))))))\)
```

We extracted the old function $m k$-length

Let's separate the function that makes length That's easy.
from the function that looks like length.

```
(lambda (le)
    ((lambda (mk-length)
                                (mk-length mk-length))
    (lambda (mk-length)
        (le (lambda (x)
            ((mk-length mk-length) x ))))))
```

Does this function have a name?

Yes, it is called the applicative-order Y combinator. At least, when we rewrite it a little bit.
(define Y
(lambda (le)
((lambda (f)
(le (lambda $(x)((f f) x))))$
(lambda (f)
$(l e(\operatorname{lambda}(x)((f f) x)))))))$

Do you now know why Y works?
Read this chapter one more time and you will.

Does (Y Y) work, too?
And how it works!!!

