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Abstract

Over the past two decades, Scheme macros have evolved into a powerful API for the compiler front-end. Like Lisp
macros, their predecessors, Scheme macros expand source programs into a small core language; unlike Lisp systems,
Scheme macro expanders preserve lexical scoping, and advanced Scheme macro systems handle other important
properties such as source location. Using such macros, Scheme programmers now routinely develop the ultimate
abstraction: embedded domain-specific programming languages.

Unfortunately, a typical Scheme programming environment provides little support for macro development. This
lack makes it difficult for programmers to debug their macros and for novices to study the behavior of macros. In
response, we have developed a stepping debugger specialized to the concerns of macro expansion. This debugger
presents the macro expansion process as a linear rewriting sequence of annotated terms; it graphically illustrates the
binding structure of the program as expansion reveals it; and it adapts to the programmer’s level of abstraction,
hiding details of syntactic forms that the programmer considers built-in.

1. The Power of Macros

Modern programming languages support a variety of abstraction mechanisms: higher-order functions or
delegates, class systems, expressive type systems, module systems, and many more. With these, program-
mers can develop code for reuse; establish single points of control for a piece of functionality; decouple
distinct components and work on them separately. As Paul Hudak [21] has argued, however, “the ultimate
abstraction is a . . . language.” The ideal programming language should therefore allow programmers to
develop, encapsulate, and reuse entire sub-languages.

The Lisp and Scheme family of languages empower programmers to do just that. Through macros, they
offer the programmer the ability to define new forms of expressions and definitions with custom behavior.
These syntactic abstractions may introduce new binding positions, perform analyses on their subterms,
and change the context of their subexpressions. In some systems, macros can share information, perform
sophisticated computation, and detect and report errors, all at compile time. As some Scheme implementers
have put it, macros have become a true API to the front-end of the compiler.

Macro definitions are a uniform mechanism for extending the expression and definition forms of the lan-
guage. Programmers can mix extensions freely using Scheme’s scoping mechanisms, such as modules and
local bindings, rather than needing preprocessors, specialized compilers, or program generators. If attached
to an expressive language [10] macros suffice to implement many general-purpose abstraction mechanisms as

1 This paper revises and extends a conference publication [5]. This work was partially supported by several NSF grants.
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libraries. For example, programmers have used macros to extend Scheme with constructs for pattern match-
ing [37], relations in the spirit of Prolog [9,18,29], extensible looping constructs [8,28], class systems [1,26]
and component systems [6,15,35], among others. In addition, programmers have also used macros to han-
dle metaprogramming tasks traditionally implemented outside the language using preprocessors or special
compilers: Owens et al. [25] have added a parser generator library to Scheme; Sarkar et al. [27] have cre-
ated an infrastructure for expressing nano-compiler passes; and Herman and Meunier [20] have used macros
to improve the static analysis of Scheme programs. As a result, implementations of Scheme such as PLT
Scheme [14] have a core of a dozen or so syntactic constructs but appear to implement a language as rich in
features as Common Lisp [32].

To support these increasingly ambitious applications, macro systems have had to evolve, too, because
true syntactic abstractions must be indistinguishable from features directly supported by the implementa-
tion’s compiler or interpreter. Historically, macros had humble beginnings in Lisp systems, where they were
compile-time functions over program fragments, usually plain S-expressions. Unfortunately, these simplistic
macros do not really define abstractions. For example, because Lisp macros manipulate variables by name
alone, references they introduce can be captured by bindings in the context of the macro’s use. This tangling
of scopes reveals implementation details instead of encapsulating them. In response, researchers developed
the notions of macro hygiene [22], referential transparency [4,7], and phase separation [13] and implemented
macro systems guaranteeing those properties. Now macros manipulate program representations that carry
information about lexical scope; affecting scope takes deliberate effort on the part of the macro writer.

Given the power of macros and the degree to which Scheme programmers benefit from them, it is as-
tonishing that no Scheme implementation offers solid debugging support for macros. The result is that
programmers routinely ask on Scheme mailing lists about unforeseen effects and subtle errors arising from
a faulty or incomplete understanding of the macro system. While experts always love to come to their aid,
these questions demonstrate that programmers need tools for exploring macro expansion just as they need
tools for exploring ordinary program execution.

In this paper, we present the first macro stepper for Scheme. In the next section we discuss the properties
of macro programming that inform the design of our debugger, and in subsequent sections we discuss the
implementation of the stepper, describe its foundations with a formal model, and prove those foundations
correct.

2. Design Considerations for a Macro Debugger

A debugger must be tailored to its target language. Debugging a logic program is fundamentally differ-
ent from debugging assembly code. Most importantly, a debugger should reflect the programmer’s mental
model of the language. This model determines what information the debugger displays as well as how the
programmer accesses it. It determines whether the programmer inspects variable bindings resulting from
unification or memory locations and whether the programmer explores a tree-shaped logical derivation or
steps through line-sized statements.

Following this analysis, the design of our debugger for macros is based on three principles of Scheme
macros:

(i) Macros are rewriting rules.
(ii) Macros respect lexical scoping.
(iii) Macros define layered abstractions.

This section elaborates these three principles and their influence on the design of our debugger.

2.1. Macros are rewriting rules

Intuitively, macro definitions specify rewriting rules, and macro expansion is the process of applying these
rules to the program until all of the macros have been eliminated and the program uses only the primitive
forms of the language.
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The expander does not rewrite terms freely. Rather, it only looks at terms in expansion contexts such as
at the top-level and in certain positions within primitive syntactic forms. The body of a lambda-form, for
example, is an expansion position, but its formal parameter list is not. Of course, a term that is not in an
expansion context may eventually be placed into an expansion context when enclosing macros are rewritten.
We reserve the words expression and definition for terms that ultimately occur in an expansion context.
The expression structure of a program, then, is gradually discovered during macro expansion.

Terms that are not expressions may be identifiers or constants, or they may be part of a macro’s structured
syntax. Macros commonly perform case analysis on their structured syntax, extracting subexpressions and
other meaningful syntax such as variable binding lists and embedding these fragments in a new expression.
Modern macro systems provide convenient notations for this case analysis and transformation of syntax.

Two ways of writing macro definitions are defined in the current Scheme report (R6RS) [30]. One is a
limited pattern-based macro facility [23] called syntax-rules. The other allows programmers to compute
syntax transformations using the full power of Scheme plus a pattern-matching form called syntax-case [7].

A macro definition using syntax-rules has the following form:

(define-syntax macro
(syntax-rules (literal · · ·)
[pattern_1 template_1]
· · ·
[pattern_n template_n]))

This definition directs the macro expander to replace any occurrences of terms matching one of the listed
patterns with the corresponding template, substituting the occurrence’s subterms for the pattern variables.
The literals determine which identifiers in the pattern are matched for equality rather than treated as
pattern variables.

For example, here is the definition of a macro that helps a programmer protect shared resources:

;; (with-lock expr) acquires a lock, evaluates the expression, and releases the lock.
(define-syntax with-lock
(syntax-rules ()
[(with-lock body)
(dynamic-wind
(lambda () (acquire-the-lock))
(lambda () body)
(lambda () (release-the-lock)))]))

By using such a macro, the programmer ensures that the enclosed expression is executed only in the proper
context: with the lock acquired. In addition, the programmer can be sure that the function calls to acquire
and to release the lock are balanced (for all possible control flows).

Given the macro definition above, macro expansion consists roughly of scanning through a program
to determine which occurrences of with-lock to replace. For example, the following procedure definition
contains one occurrence of the macro:

(define (print-items header items)
(with-lock
(begin (print header) (for-each print items))))

The expander rewrites the procedure definition to the following:

(define (print-items header items)
(dynamic-wind
(lambda () (acquire-the-lock))
(lambda () (begin (print header) (for-each print items)))
(lambda () (release-the-lock))))
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The result contains no occurrences of the macro; macro expansion is complete.
Our macro stepper shows the expansion process to the programmer as a sequence of rewriting steps. Each

step consists of two program texts that differ by the application of a single macro rewriting rule. The stepper
highlights the site of the rule’s application.

The tool’s graphical user interface permits programmers to go back and forth in an expansion and also
to skip to the beginning or end of the rewriting sequence. The ideas for this interface have been borrowed
from the run-time stepper for PLT Scheme and similar steppers for Lisp-like languages [3,24,34].

Here is the program from above in the macro stepper:

highlighted

highlighted

The stepper shows the original code and the result of applying the with-lock rewriting rule. The figure
indicates the highlighted regions: the macro use and its expansion.

If the programmer navigates forward, the stepper indicates that expansion is complete and shows the final
program:

The final program displayed by the stepper is almost what one would expect from naively applying the
rewrite rules, but some of the identifiers have a “:1” suffix. These come from the macro system’s lexical
scoping mechanism. In this particular case, the marks do not affect the meaning of the program. The next
section explains these marks in more detail.

2.2. Macros respect lexical scoping

Scheme requires macro expansion to be hygienic [4,22]—to respect lexical scoping according to the fol-
lowing two principles: 2

(i) References introduced by a macro (not taken from the macro’s arguments) refer to the binding occur-
rence apparent at the site of the macro’s definition.

(ii) Binding occurrences of identifiers introduced by the macro (not taken from the macro’s arguments)
bind only other identifiers introduced by the same macro transformation step.

2 Unless the programmer explicitly programs such a violation using the hygiene-breaking features of a system such as the
syntax-case system.
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The gist of these requirements is that macros act “like closures” at compile time. For example, the writer
of with-lock can be certain of the meaning of acquire-the-lock, release-the-lock, and even lambda,
regardless of whether some of those names have different bindings where the macro is used. Similarly, a
macro can create a temporary variable binding without that binding capturing references in expressions
that the macro receives as arguments.

Thinking of macro expansion in terms of substitution provides additional insight into the problem and its
solution. A single macro expansion step involves two sorts of substitution and thus there are two sorts of
capture to avoid. The first substitution consists of bringing the macro body to the use site; this substitution
must not allow bindings in the context of the use site to capture names present in the macro body (con-
dition 1). The second consists of substituting the macro’s arguments into the body; names in the macro’s
arguments must avoid capture by bindings in the macro body (condition 2), even though the latter bindings
might not be immediately apparent in the macro’s result.

To see how bindings might not be apparent, consider the following definition:

(define-syntax (munge stx)
(syntax-rules ()
[(munge e) (mangle (x) e)]))

It is not clear what role the template’s occurrence of x plays. If mangle acts like lambda, then x would
be a binding occurrence, and by the hygiene principle it must not capture any free occurrences of x in the
expression e. 3 On the other hand, if mangle acts like begin, then the occurrence of x is a reference to a
name defined in the context of munge’s definition. The second hygiene principle guarantees that if x is a
reference, it refers to the x in scope where the macro was defined. Without performing further expansion
steps, the macro expander cannot tell the role x plays and consequently which hygiene principle governs its
behavior. Thus it must delay the treatment of x until the use of mangle has been replaced with core syntax.
The program representation must contain enough information to allow for both possibilities.

In short, the binding structure of a program is gradually discovered during macro expansion. The precise
structure is not known until the program is completely expanded, although partial information is known
earlier.

Hygienic macro systems usually implement the proper lexical scoping by annotating their program repre-
sentations with timestamps, or marks. An identifier’s mark, if one is present, indicates which macro rewriting
step introduced it. Even though we customarily represent marks as numbers, we only care about their iden-
tity, not the order in which they occur. To illustrate, here is a macro that introduces a binding for a
temporary variable:

;; (myor e1 ... eN) evaluates its subexpressions
;; in order until one of them returns a non-false
;; value. The result is that non-false value, or
;; false if all evaluated to false.
(define-syntax myor
(syntax-rules ()
[(myor e) e]
[(myor e1 e ...)
(let ([r e1])
(if r r (myor e ...)))]))

and here is a program that uses it:

(define (nonzero? r)
(myor (negative? r) (positive? r)))

3 There are devious macros, related to the “ill-behaved macros” discussed in Sect. 2.3, that challenge conventional intuitions
about hygiene by searching through expressions looking for identifiers to capture. Regardless, the hygiene principles we describe
give a useful, if imperfect, guide to the scoping properties of macros.
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If macro expansion followed the naive rewriting process, the temporary variable r introduced by the macro
would capture the reference to the formal parameter named r:

;; RESULT OF NAIVE EXPANSION, CAUSES CAPTURE
(define (nonzero? r)
(let ([r (negative? r)])
(if r r (positive? r))))

Instead, the macro expander adds a mark to every macro-introduced identifier. Using our notation for marks,
the Scheme expander gives us this term:

(define (nonzero? r)
(let:1 ([r:1 (negative? r)])
(if:1 r:1 r:1 (myor:1 (positive? r)))))

The macro expander marks introduced identifiers indiscriminately, since it cannot predict which identifiers
eventually become variable bindings. When a marked identifier such as let:1 does not occur in the scope
of a binding of the same marked identifier, the mark is ignored; hence the let:1 above means the same
thing as let. In contrast, the two references to r:1 occur inside of a binding for r:1, so they refer to that
binding. Finally, the occurrence of the unmarked r is not captured by the binding of r:1; it refers to the
formal parameter of nonzero?.

Marks are a crucial part of Scheme’s macro expansion process. Our macro debugger visually displays
this scope information at every step. The display indicates from which macro expansion step every subterm
originated by rendering terms from different steps in different colors. If there are too many steps to give each
one a distinguishable color, then the stepper adds numeric suffixes to marked identifiers, such as let:1. 4

Here is what the macro stepper displays for the expansion of nonzero?:

red

black

The introduced binding has a mark, and the mark matches the introduced references. The marked identifiers
are rendered in red and the unmarked identifiers are rendered in black.

Recall that macro expansion gradually discovers the binding structure of the program. The discovery
process occurs in two parts. When the macro expander sees a primitive binding form, it discovers the
bindings of its bound variables. It does not yet know, however, what matching occurrences of those identifiers
constitute references to those bindings. Other intervening macros may introduce bindings of the same name.
Only when the macro expander encounters a variable reference does the binding become definite.

The macro stepper displays its knowledge of the program’s binding structure through binding arrows,
inspired by the arrows of DrScheme’s Check Syntax tool [11]. When the macro expander uncovers a binding,
the macro stepper draws a tentative binding arrow from the binding occurrence to every identifier that may
possibly be bound by it. 5 The stepper annotates tentative binding arrows with a “?” symbol at the bound

4 Because of the colors, it is never unclear whether a suffix is part of the actual identifier or a macro stepper annotation.
5 The macro stepper cannot predict references created using hygiene-breaking facilities like datum->syntax, of course, but once
they are created the macro stepper does identify them as potential references.
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end. When the macro expander finally resolves a variable to a specific binding, the arrow becomes definite
and the question mark disappears. Alternatively, macro expansion may uncover a closer binding occurrence
of the same name, in which case the target of the tentative arrow changes.

Here is the next step in the expansion with some of the binding arrows shown:

Note that the references to the marked r:1 variables definitely belong to the binding of r:1, and the first
reference to the unmarked r is definitely bound by the procedure’s formal parameter. The final occurrence
of r is still tentative because macro expansion is not finished with its enclosing term.

Stepping forward once more reveals the fully expanded program. Since all of the references have been
uncovered by the macro expander, all of the binding arrows are definite:

Binding information is important in debugging macros. Because macros often manipulate the lexical scope
in a subtle manner, the shape of an intermediate term alone may not reveal an error. The program seems
correct, but variables do not get bound or get bound in the wrong place. In these cases, the stepper’s visual
presentation of lexical binding is critical.

To illustrate this point, consider the creation of an if-it macro, a variant of if that binds the variable
named it to the result of the test expression for the two branches:

(define-syntax (if-it1 stx)
(syntax-case stx ()
[(if-it1 test then else)
#’(let ([it test]) (if it then else))]))

(define-syntax (if-it2 stx)
(syntax-case stx ()
[(if-it2 test then else)
(with-syntax

([it (datum->syntax #’if-it2 ’it)])
#’(let ([it test]) (if it then else)))]))
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These two attempts at the macro are written in the syntax-case macro system [7,30]. Their right-hand sides
can contain Scheme code to perform the macro transformation, including syntax-manipulating procedures
such as datum->syntax and binding forms such as with-syntax. These facilities offer the programmer
explicit control over lexical scoping, necessary when “breaking hygiene” as the programmer intends with
this macro.

One of these macro definitions achieves its purpose, and one does not. A Scheme novice taking a first step
beyond basic macro programming cannot tell which one is correct, or perhaps can guess but cannot explain
why. A Scheme programmer equipped with the macro stepper can easily tell:

On the right, all four of the it identifiers have the same marks, but on the left they do not.
The macro stepper also explains datum->syntax as a function that transfers the marks from its first

argument to its second. That is, the occurrence of it in if-it2’s expansion is unmarked because the
if-it2 keyword was unmarked. Thus the macro stepper helps reinforce and enhance the programmer’s
mental model of hygienic macro expansion.
Note: PLT Scheme attaches additional properties to lexical tokens and syntax trees during macro expansion.
The programmer can view those properties, on demand, in a separate part of the macro stepper.

2.3. Macros define layered abstractions

Preprocessors and compilers translate from a source language to a target language. So do macros, but in
a system with macros, there are many source languages and many target languages.

For example, PLT Scheme’s new trait library [16] is implemented as a macro that translates trait decla-
rations to mixin declarations [17], i.e., as functions from classes to classes. Mixins have been part of PLT
Scheme’s standard library for a long time—and they are implemented as macros in terms of “basic” Scheme.
This “basic” language, however, is itself implemented using macros atop a smaller language kernel, following
Steele’s original precedent [31].

Such layers of linguistic abstraction are common in languages that support macros, and they demand
special support from debuggers. After all, a debugger for a high-level language should not bother the pro-
grammer with low-level details. In a program with layered abstractions, however, the line between high-level
and low-level is fluid. It varies from one debugging session to another. The debugger must be able to adjust
accordingly.

A macro debugger that operates at too low a level of abstraction burdens the programmer with extra
rewriting steps that have no bearing on the programmer’s problem. In addition, by the time the stepper
reaches the term of interest, the context has been expanded to core syntax. Familiar syntactic landmarks
may have been transformed beyond recognition. Naturally, this prevents the programmer from understanding
the macro as a linguistic abstraction in the original program. For the class example, when the expander is
about to elaborate the body of a method, the class keyword is no longer visible; field and access control
declarations have been compiled away; and the definition of the method no longer has its original shape. In
such a situation, the programmer cannot see the forest for all the trees.

The macro debugger overcomes this problem with macro hiding. Specifically, the debugger implements a
policy that determines which macros the debugger considers opaque. Designating a macro as opaque effec-
tively removes its rewriting rules and adds expansion contexts, as if it were truly a primitive of the language.
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Fig. 1. Example of macro hiding

The programmer can modify the policy as needed. The macro debugger does not show the expansion of any
opaque macros, but if an occurrence of a macro has subexpressions, it does display the expansions of those
subexpressions in the context of the original macro form.

Consider the if-it2 macro from the previous subsection. After testing the macro itself, the programmer
wishes to employ it in the context of a larger program, an evaluator for arithmetic expressions:

(define (aeval expr)
(match expr
[(cons op args)
(apply (aeval op) (map aeval args))]
[(? number? n) n]
[(? symbol? x)
(if-it2 (lookup x)

(fetch it)
(error ’unbound))]))

This code uses the pattern-matching form called match from a standard library. Since match is a macro,
the stepper would normally start by showing the expansion of the match expression. It would only show
the expansion of if-it2 later, within the code produced by match. That code is of course a tangled web
of nested conditionals, intermediate variable bindings, and failure continuations, all of which is irrelevant
and distracting for someone interested in inspecting the behavior of if-it2. The left-hand side of Fig. 1
shows this view of the program’s expansion. Note the hiding policy editor, which includes no directive about
match.

To eliminate the noise and to focus on just the behavior of interest, the programmer instructs the macro
stepper to consider match an opaque form. The macro stepper allows the programmer to update the policy
by simply clicking on an occurrence of a macro and changing its designation in the policy editor. When the
policy changes, the stepper immediately updates the display.

When the programmer hides match, instead of treating match as a rewriting rule, the stepper treats match
as a primitive form that contains expansion contexts: the expression following the match keyword and the
right-hand side of each clause. With match considered primitive, there is only one rewriting rule that applies
to this program. See the right-hand side of Fig. 1.

Now the programmer can concentrate on if-it2 in its original context, without the distraction of irrelevant
expansion steps. As the screenshot shows, macro hiding does not interfere with the macro stepper’s ability
to determine the program’s binding structure.

In principle, a macro hiding policy is simply a predicate on macro occurrences that determines whether to
show or hide its details. In practice, programmers control the macro hiding policy by designating particular
macros or groups of macros as opaque, and that designation applies to all occurrences of a macro. The
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policy editor allows programmers to specify the opacity of macros at two levels. The coarse level includes
two broad classes of macros: those belonging to the base language [14] and those defined in standard libraries;
hiding these allows the programmer to focus on the behavior of their own macros, which are more likely
to contain bugs than library macros. These classes of macros correspond to the “Hide mzscheme syntax”
and “Hide library syntax” checkboxes. For finer control over the hiding policy, programmers can override
the designation of individual macros. We could allow policies to contain more complicated provisions, and
we are still exploring mechanisms for specifying these policies. We expect that time and user feedback will
be necessary to find the best ways of building policies. So far we have discovered only two additional useful
policies. The first hides a certain class of macros that implement run-time contract checking [12]. The second
hides the expansion of macros used in the right-hand sides of macro definitions, e.g., uses of syntax-rules
and syntax-case, which are actually macros. We have added support for these cases in an ad hoc manner.

Because of macro hiding, our debugger presents steps that actually never happen and it presents terms that
the expander actually never produces. In most cases these spurious terms are plausible and instructive, but
for some macros, macro hiding produces terms that are not equivalent to the original program. These faulty
terms generally arise when a macro inspects one of its subexpressions or otherwise treats it as more than
just an expression. In a sense, such macros violate the expression abstraction by inspecting the expression’s
underlying representation.

Macro hiding relies on the expression abstraction to justify its reordering of expansion steps. One way of
breaking the expression abstraction is to quote a subexpression, as in this example:

(define-syntax time
(syntax-rules ()
[(time e) (time-apply (quote e) (lambda () e))]))

If time is opaque, then macro hiding shows expansion in the context of the time macro. But the resulting
terms do not preserve the meaning of the original term, because they report different quoted constants.
Thus we regard this macro as ill-behaved with respect to the expression abstraction.

A more subtle way of breaking the expression abstraction is analyzing a subexpression or a subterm that
is only sometimes used as an expression:

(define-syntax no-constants
(syntax-rules (quote)
[(no-constants (quote c)) (error "no constants please")]
[(no-constants e) e]))

Here’s the expansion of one use of no-constants:

(no-constants (quasiquote x)) =⇒ (quasiquote x) =⇒ (quote x)

With no-constants hidden, the expansion is this:

(no-constants (quasiquote x)) =⇒ (no-constants (quote x))

But if the final term were evaluated, it would result in an error rather than the expected constant x.
The macro debugger also cannot hide a macro that clones a subexpression. Since the subexpression occurs

multiple times in the output, the macro debugger finds multiple expansion subsequences associated with the
same context, the context of the subexpression in the original macro use. When it discovers the contexts
are the same (or overlap), the macro stepper issues a warning and continues, showing that instance of the
macro. This limitation is indirectly beneficial, since expression cloning is almost always an error in the macro
definition.

In general, the expansions of a cloned expression may be different, so there is no good way to fit them
into the same context. As a special case, however, duplicated variable references are allowed, since their
expansions are trivial and no conflicts arise.
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Note that not every duplication of a subterm is a duplication of an expression. For example, consider the
following macro:

(define-syntax push!
(syntax-rules ()
[(push! s e)
(set! s (cons e s))]))

The macro duplicates s. But since s appears as the target of an assignment, s must be a variable name, and
that occurrence is not an expression. The other occurrence of s is as a variable reference expression, which
has no expansion steps. So this macro is regarded as well-behaved by macro hiding. If, however, set! allowed
targets that included subexpressions (as Lisp’s setf does, for example), then this push! macro would be
capable of duplicating subexpressions.

3. Previous offerings

Most Scheme implementations provide limited support for inspecting macro expansion. Typically, this
support consists of just two procedures: expand and expand-once (sometimes called macroexpand and
macroexpand-1 [32]). Some implementations also provide a procedure called expand-only.

When applied to a term, expand runs the macro expander on the term to completion. It does not give
the programmer access to any intermediate steps of the expansion process. If expansion aborts with an
error, expand usually shows the faulty term, but it does not show the term’s context. The second common
tool, expand-once, takes a term and, if it is a macro use, performs a single macro transformation step.
Since expand-once returns only a simple term, it discards contextual information such as the syntactic
environment and even the place where the macro expander left off. Finally, expand-only acts like expand
but takes as an extra argument the list of macros to expand.

Neither of these tools suffices for debugging complex macros. In general, macro programmers need to
debug both syntactic and logical errors in their macros. Some macro bugs, such as using a macro in a
way that does not match its rewriting rules, for example, cause the macro expander to halt with an error
message. Other bugs pass through the expander undetected and result in a well-formed program—but the
wrong well-formed program.

Programmers using expand may catch syntactic bugs, but they usually have a difficult time figuring out
what sequence of transformations produced the term that finally exposed the flaw. The error raised by
expand only reports the faulty term itself, not the context the term occurs in. Furthermore, expand races
past logical errors; it is up to the programmer to decipher the fully-expanded code and deduce at what point
the expansion diverged from the expected path.

Using expand-once, on the other hand, leads the programmer through expansion step by step—but only
for the root term. Thus expand-once is useless for finding errors that occur within nontrivial contexts. Such
errors can occur in macros that depend on bindings introduced by other macros.

In fact, expand suffers from one more problem: it reveals too much. For example, Scheme has three
conditional expressions: if, cond, and case. Most Scheme implementations implement only if as a primitive
form and define cond and case as macros. Whether a special form is a primitive form or a macro is irrelevant
to the programmer, but macro expansion reveals the difference. It is thus impossible to study the effects of a
single macro or a group of related macros in an expansion, because expand processes all macros, even those
the programmer is not concerned with. Using expand-only avoids this problem. but it otherwise exhibits
the same flaws as expand. Our idea of macro hiding can be seen as a generalization of expand-only.

Implementing a better set of debugging tools than expand and expand-once is surprisingly difficult. It
is impossible to apply many techniques that work well in run-time debugging. For example, any attempt
to preprocess the program to attach debugging information or insert debugging statements fails for two
reasons: first, until parsing and macro expansion happens, the syntactic structure of the tree is unknown;
second, because macros can inspect their arguments, annotations or modifications are likely to change the
result of the expansion process [36].
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These limitations imply that a proper debugger for macros cannot be built atop the simplistic tools
exposed to Scheme programmers. Implementing the macro stepper requires cooperation with the macro
expander itself.

4. Implementation

The structure of our macro debugger is like the structure of a compiler: it has a front end that sits between
the user and the intermediate representation (IR), a “middle end” or optimizer that performs advantageous
transformations on the intermediate representation, and a back end that connects the intermediate repre-
sentation to the program execution. While information in a compiler flows from the front end to the back
end, information in a debugger starts at the back end and flows to the front end. The debugger’s back end
monitors the execution of the program; the front end displays the symbolic steps to the user. When present,
the debugger’s middle end is responsible for “optimizing” the IR for user comprehension.

In the macro stepper, the back end is connected to the macro expander, which we have instrumented to
emit events that describe three aspects of the process: its progress, the intermediate terms, and the choices
of fresh names and marks. The back end parses this stream of events into a structure that represents the
call-tree of the expander functions for the expansion of the program. This structure serves as the macro
stepper’s intermediate representation. The middle end traverses the tree, hiding extraneous details. Finally,
the front end turns the tree representation into a sequence of rewriting steps.

In this section we discuss the implementation of the macro stepper for a representative subset of Scheme.
We show the instrumentation of the macro expander and we describe the parser that reconstructs the
expander call tree. We explain how the macro hiding algorithm—the middle end—transforms the IR tree
by detecting the contexts of hidden macros. Finally, we discuss how the front end turns the IR into the
rewriting sequences shown in Sect. 2.

4.1. The Macro Expander

The macro expander is implemented as a set of mutually recursive procedures. PLT Scheme uses the
syntax-case algorithm [7] for macro expansion, and we describe our implementation in the context of that
algorithm, but our implementation strategy applies in principle to other macro expanders.

Figure 2 lists pseudocode for expand-term, the main expander procedure. Figure 3 provides definitions
for some relevant primitive expander procedures; they recursively call expand-term on their subterms, as
needed.

The expand-term procedure distinguishes macro applications, primitive syntax, and variable references
with a combination of pattern matching on the structure of the term and environment lookup of the leading
keyword.

Macro uses are handled according to the transformation rules associated with the macro. First, the
expander creates a fresh mark and stamps it on the given term. Second, it transforms the term using
the macro’s transformation rules. Finally, it applies the mark again, canceling out marks on subterms of the
original term. Naturally, the expander recurs on the result to eliminate macros in the resulting term. The
self-canceling marking is an efficient implementation of timestamps due to Dybvig et al. [7].

Primitive forms are handled by calling the primitive expander procedure associated with the keyword.
The initial environment maps the name of each primitive (such as lambda) to its primitive expander
(expand-lambda). When the primitive expander returns, expansion of that term is complete.

4.2. Instrumenting the Expander

The shaded fragments in Fig. 2 and Fig. 3 represents our additions to the expander to emit debugging
events.
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expand-term(term, env) =

emit-event(Visit, term)

case term of

(kw . _)

when lookup(resolve(kw), env)

= ("macro", rules)

=> emit-event(EnterMacro)

let M = fresh-mark

let termM = mark(term, M)

emit-event(Mark(M))

let term2M = transform(rules, termM)

let term2 = mark(term2M, M)

emit-event(ExitMacro(term2))

return expand-term(term2, env)

(kw . _)

when lookup(resolve(kw), env)

= ("primitive", expander)

=> let term2 = expander(term, env)

emit-event(Return(term2))

return term2

id

when lookup(resolve(id), env)

= "variable"

=> emit-event(Variable)

emit-event(Return(term))

return term

else

=> emit-event(Error)

raise syntax error

Fig. 2. Expansion procedure

The calls to emit-event send events through a private channel of communication to the macro stepper.
The events carry data about the state of the macro expander. Figure 4 shows the event variants and the
types of data they contain.

A Visit event indicates the beginning of an expansion step, and it contains the term being expanded.
Likewise, the expansion of every term ends with a Return event that carries the expanded term.

The EnterMacro and ExitMacro events surround macro transformations. The Mark event carries the fresh
mark for that transformation step, and the ExitMacro event carries the term produced by the transformation.
The macro-handling case of expand-term does not include a Return event because the expander has not
completed expansion of that term.

For every primitive, such as if, there is an event (PrimIf) that indicates that the macro expander is in
the process of expanding that kind of primitive form. Primitives that create and apply renamings to terms
send Rename events containing the fresh symbols to which the bound names are renamed.

4.3. Reconstruction

The back end of the macro stepper consumes the sequence of low-level events from the instrumented macro
expander, parsing it into a tree-structured intermediate representation. The kinds of events in the stream
determine the variants of the tree’s nodes, and the nodes’ slots contain the data carried by the events.
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expand-prim-lambda(term, env) =

emit-event(PrimLambda)

case term of

(kw formals body)

when formals is a list of identifiers

=> let newvars = freshnames(formals)

let env2 = extend-env(env, newvars, "variable")

let formals2 = rename(formals, formals, newvars)

let body2 = rename(body, formals, newvars)

emit-event(Rename(newvars))

let body3 = expand-term(body2, env2)

return (kw formals2 body3)

else => emit-event(Error)

raise syntax error

expand-prim-if(term, env) =

emit-event(PrimIf)

case term of

(kw test-term then-term else-term)

=> let test-term2 = expand-term(test-term, env)

let then-term2 = expand-term(then-term, env)

let else-term2 = expand-term(else-term, env)

return (kw test-term2 then-term2 else-term2)

else => emit-event(Error)

raise syntax error

expand-primitive-let-syntax(term, env)

emit-event(PrimLetSyntax)

case term of

(kw ([lhs rhs] ...) body)

when each lhs is a distinct identifier

and each rhs is a valid transformer

=> let lhss = (lhs ...)

let rhss = (rhs ...)

let newvars = freshnames(lhss)

let env2 = extend-env(env, newvars, rhss)

let body2 = rename(body, lhss, newvars)

emit-event(Rename(newvars))

return expand-term(body2, env2)

else => emit-event(Error)

raise syntax error

Fig. 3. Expansion procedures for primitives and macros

Events event ::= Visit(expr) | Return(expr)

| EnterMacro | Mark(mark) | ExitMacro(expr)

| PrimLambda | PrimIf | PrimApp | PrimLetSyntax

| Variable | Rename(symbols)

Traces T ::= list of events

Fig. 4. Expansion events
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IRTrees ir ::= MacroNode(expr , expr ,mark , expr , ir)

| VariableNode(expr , expr)

| LambdaNode(expr , expr , symbols, ir)

| IfNode(expr , expr , ir , ir , ir)

| AppNode(expr , expr , irlist)

| LetSyntaxNode(expr , expr , symbols, ir)

Fig. 5. Intermediate representation structures

Expand ::= Visit EnterMacro Mark ExitMacro Expand

| Visit PrimLambda Rename Expand Return

| Visit PrimIf Expand Expand Expand Return

| Visit PrimApp Expand* Return

| Visit PrimLetSyntax Rename Expand Return

| Visit Variable Return

Expand* ::= ε

| Expand Expand*

Fig. 6. Grammar of event streams

parse(Visit(expr); EnterMacro; Mark(m); ExitMacro(expr ′); Expandn) =

MacroNode(expr , finalterm(tn), m, expr ′, tn)

where tn = parse(Expandn)

parse(Visit(expr); PrimLambda; Rename(newvars); Expandb; Return(expr ′)) =

LambdaNode(expr , expr ′,newvars, parse(Expandb))

parse(Visit(expr); Variable; Return(expr ′)) =

VariableNode(expr , expr ′)

parse(Visit(expr); PrimIf; Expand1; Expand2; Expand3; Return(expr ′)) =

IfNode(expr , expr ′, parse(Expand1), parse(Expand2), parse(Expand3))

parse(Visit(expr); PrimApp; Expand*; Return(expr ′)) =

AppNode(expr , expr ′, parse∗(Expand*))

parse(Visit(expr); PrimLetSyntax; Rename(newvars); Expandb; Return(expr ′)) =

LetSyntaxNode(expr , expr ′,newvars, parse(Expandb))

parse∗(Expand1 Expand*2) =

Cons(parse(Expand1), parse∗(Expand*2))

parse∗(ε) = Empty

Fig. 7. Parser
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Figure 5 lists the variants of the IR tree datatype. There is one variant for each primitive syntactic form
plus one variant for a macro rewriting step. Every variant in the tree datatype starts with two fields that
contain the initial term and final term for that expansion. The functions initialterm and finalterm serve
as accessors for those fields. The remaining fields of each variant are determined by the expander’s behavior
on that term variant. The MacroNode variant contains a field for the mark associated with that step, the
result of the macro transformation, and the subtree corresponding to the expansion of the macro’s result. The
LambdaNode variant contains a list of symbols for the fresh names chosen for the lambda-bound variables
and an IRTree field that represents the expansion of the renamed body expression. The VariableNode variant
contains no additional information.

Given the instrumented macro expander, we can easily read off the grammar for event streams. The termi-
nals of the grammar consist of exactly the expansion events described in Fig. 4. There are two nonterminals:
Expand , which corresponds to the events produced by an invocation of expand-term, and an auxiliary Ex-
pand* . Each call to emit-event corresponds to a terminal on the right hand side, and each recursive call to
expand-term corresponds to an occurrence of Expand on the right hand side. Figure 6 shows the grammar,
G; nonterminal names are italicized.

The back end parses the event streams into the intermediate representation. Figure 7 shows the pseudocode
for the parser function. 6 The recursive structure of the parser is identical to the recursive structure of the
expander. The environment is not explicit in the IR datatype, but it can be reconstructed from a node’s
context as follows: traverse the IR tree from the root (the node corresponding to the expansion of the entire
program) to the given node, adding to the environment on every LambdaNode or LetSyntaxNode node.

4.4. Handling syntax errors

The macro stepper also handles expansions that halt because of syntax errors. Handling such errors
requires extending both the intermediate representation and the parser.

We extend the IR with a notion of an incomplete node. We add fields at every position where an error can
occur. For example, the if keyword checks to make sure it has exactly three subexpressions before starting
to expand the test expression, so IfNode gets one additional field:

IfNode(expr , expr , optexn, ir , ir , ir)

If an optexn field holds an exception value, then all the fields that follow it are absent. Furthermore, if an
ir field holds an incomplete node, then the fields that follow it are absent.

We extend the parser with a new nonterminal, Fail, that represents the event streams of failed expansions:

Fail ::= Visit PrimLambda Error

| Visit PrimLambda Rename Fail

| . . .

As with Expand, the alternatives can be read off the instrumented code, picking only the cases where an
error is raised or a recursive call fails. The start symbol of the grammar goes to either Expand or Fail .

The error-handling grammar is roughly twice the size of the original grammar. Furthermore, the new
alternatives and action routines share a great deal of structure with the original alternatives and action
routines. We therefore create this grammar automatically from annotations rather than adding the error-
handling parts by hand.

4.5. Macro hiding

Once the back end has created an IR structure, the macro stepper processes it with the user-specified
macro hiding policy to get a new IR tree. Because the user can change the policy many times during the

6 In our implementation of the macro stepper, the parser is constructed from the grammar using PLT Scheme’s macro-based
parser generator library [25].
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hide : IR -> IR

hide(MacroNode(e1,e2,mark,emid,irk)) =

if should-hide(e1)

then let table = table-of-proper-subterms(e1)

subs = seek(MacroNode(e1,e2,mark,emid,irk), table)

e2’ = substitute-trees-with-contexts(e1, subs)

in SynthNode(e1, e2’, subs)

else let irk’ = hide(irk)

in MacroNode(e1, finalterm(irk’), mark, emid, irk’)

hide(LambdaNode(e1,e2,newvars,irbody)) =

let irbody’ = hide(irbody)

e2’ = substitute-lambda-body(e2, finalterm(irbody’))

in LambdaNode(e1, e2’, newvars, irbody’)

...

Fig. 8. hide function

seek : (IR, Table) -> list((path, term))

seek(ir, table) =

if table contains initialterm(ir) at path

then [(path, hide(ir))]

else seek-within(ir, table)

seek-within : (IR, Table) -> list((path, term))

seek-within(MacroNode(e1, e2, mark, emid, irk), table) =

let table’ = adjust-for-marks(table, e1, mark, emid)

in seek(irk, table’)

seek-within(LambdaNode(e1, e2, newvars, irbody), table) =

let table’ = adjust-for-lambda-rename(table, e1, newvars)

in seek(irbody, table’)

seek-within(IfNode(e1, e2, irtest, irthen, irelse), table) =

append(seek(irtest, table),

seek(irthen, table),

seek(irelse, table))

...

Fig. 9. seek function

debugging session, the macro stepper retains the original IR tree, so that updating the display involves only
reprocessing the tree and re-running the front end.

We refer to the tree produced by applying the macro policy as the synthetic tree. The datatype of synthetic
trees contains an additional IR node variant that does not correspond to any primitive syntactic form. This
node contains a list of subterm expansions, where each subterm expansion consists of an IR tree and a path
representing the context of the subterm in the node’s original syntax.

The macro hiding algorithm is a traversal of the IR tree in two alternating modes, hide and seek. In hide
mode, the algorithm looks for macro-rewriting nodes to hide. In seek mode, the algorithm is traversing the
tree corresponding to a hidden macro’s expansion, looking for subtrees to show; that is, subtrees correspond-
ing to terms that exist in the macro occurrence to be hidden. When it finds such a subtree, it switches back
to hide mode. The algorithm is parameterized over the hiding policy, which we denote as should-hide(·).

Figure 8 shows the essence of the hide function, which consumes an IR tree and produces an IR tree. If the
input is a macro node and the policy says to hide the macro, the stepper switches to seek mode to continue
the traversal of the macro node. Seek mode returns a list of subtrees with contexts, and the hide function
replaces the original macro node with a synthetic node containing the subtrees. When the hide function gets
a primitive syntax node or a macro node that should not be hidden, it just recurs on the node’s subtrees.

In addition to removing macro expansion nodes from the tree, the hide function must also recompute the
final term for every node that it produces to account for hidden macros. This calculation involves the node’s
processed subtrees and their contexts, which are fixed for primitive nodes and calculated by the seek phase
for synthetic nodes. The auxiliary function substitute-trees-with-contexts, which computes the final term of
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a synthetic node, checks that all of the contexts it receives are disjoint. If contexts overlap (due to cloned
subexpressions), the macro stepper shows the current node instead.

In seek mode (see Fig. 9), the algorithm is looking for subtrees for terms that occurred in the original
macro expression. The existence of such a subtree implies that the subterm occupied an expansion context
of the hidden macro. When the stepper finds these subtrees, it switches back to hiding mode for the subtree,
then pairs the resulting synthetic tree with the context of the hidden macro expression that it occurred in.

When the seek function encounters a binding form, it must adjust the set of terms it is looking for to
account for the renaming done. Suppose that we are processing the following expression that uses the macro
or, which we would like to hide:

(or X Y) =⇒ (let ([t X]) (if t t Y))

When the algorithm initially enters seek mode, the term to search is the original use of or. But let is a
binding form and applies a renaming to its body, including the subexpression Y. So in the body of the let
form, the algorithm should not be looking for the original Y, but for Y wrapped with the let’s renaming.
The algorithm does this by updating the table whenever it passes through a binding primitive.

In fact, the algorithm tracks the identity of the syntax objects rather than comparing them for textual
equality, so it does not confuse subterms of a hidden macro with terms arising later in the macro’s expansion.
Consequently, it also enforces a strict interpretation of “subexpression”: if a macro takes apart a term and
reassembles it, the macro hiding algorithm does not consider them the same term. We consider this the
proper behavior: by analyzing and rebuilding an expression a macro takes responsibility for its contents. Of
course, untouched subexpressions of an analyzed term are still recognized as the same.

Although it is not shown in the algorithm sketch, the debugger also collects renaming steps performed
by the primitive binding forms and adds them to the synthetic nodes. This extra information allows the
macro debugger to recognize binding positions within macros that act as binding forms. The front end uses
the information to draw binding arrows correctly even when the primitive binding form isn’t visible in the
macro stepper.

4.6. Front End

Once macro hiding has produced an IR tree adjusted to the programmer’s level of abstraction, the macro
stepper’s front end translates the tree into a sequence of rewriting steps. This sequence is displayed by the
macro stepper’s graphical user interface. Each step contains the program before expansion and the program
after expansion, along with a context specification that indicates where the step takes place. In addition, the
data representation for a rewrite step records the bindings and references known at the time of the rewriting
step. The macro stepper uses this information to draw binding arrows and distinguish between tentative
and definite references.

When the front end encounters a macro node in its traversal of the IR tree, it creates a rewriting step and
adds it to the sequence generated by the macro node’s continuation subtree. The step contains the program
term before and after applying the macro. The front end constructs the second program term by inserting
the macro’s result term into the inherited program context.

When the front end encounters a primitive node in the IR tree, it generally recurs on the subtrees of
the primitive node, extending the expansion context and threading through the program term and binding
information. The subsequences from all of the node’s subtrees are appended together.

The resulting rewriting sequence also stores information about the known bindings and references. When-
ever the front end encounters a binding node—LambdaNode, LetSyntaxNode, or SyntheticNode containing
renaming steps—it adds the bound occurrences to the accumulator for known bindings. Likewise, when
it encounters a variable node or macro node, it adds the variable or macro keyword to the list of known
references. Synthetic nodes do not directly add to the list of references; instead, they contain variable or
macro nodes in their list of subterm expansion trees.
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Terms expr ::= id

| datum

| (expr · · · expr)

Identifiers id , kw ::= s

| mark(id ,mark)

| subst(id , id , s)

Symbols s ::= countable set of names

Marks mark ::= countable set

Denotations d ::= variable

| 〈primitive, symbol〉

| 〈macro, transformer〉

Environments E : Symbol → Denotation

Stores S : sets of Symbols and Marks

Expansion relation E ` expr , S ⇓ expr , S

Fig. 10. Domains and relations

5. Formal Model

The reliability of the macro stepper depends on the faithfulness of its reconstruction of the recursive
expansion process. Rather than assign meaning directly to the instrumented expander functions, we model
the behavior of the expander with a big-step semantics. We extend the usual model of macro expansion to
include the event stream generated by our instrumentation. We then prove a correspondence between the
IR trees produced by the back end’s parser and the extended big-step derivations.

5.1. Macro expansion

Our model of macro expansion is an adaptation of the syntax-case model of Dybvig et al. [7]. 7 We use
their program representation and lexical scoping mechanism, but we adapt their formulation of expansion
via recursive equations to a big-step semantics (similar to an earlier formulation by Clinger and Rees [4]). In
the next section, we show how the big-step derivations correspond to the structures produced by the macro
debugger’s back end.

The expansion process operates on terms, using an environment to record the meanings of bound names
and a store for the generation of fresh names and marks. The basic judgment thus has the shape

E ` expr , S ⇓ expr ′, S′

and says that the term expr fully macro expands into expr ′ in the environment E, transforming the store S
into S′. Figure 10 summarizes the domains and metavariables of our semantic framework.

To respect lexical scope, Scheme macro systems enrich their representations of programs with lexical
scoping information and timestamps that record when identifiers are introduced. The representation used
by the syntax-case system introduces two new variants of identifiers beyond simple symbols. One variant

7 Ideally, we would like to use rewriting models like those of Bove and Arbilla [2] and Gasbichler [19], but we have found those
models unsuitable as the specification of our debugger.
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resolve(s) = s

resolve(mark(id ,m)) = resolve(id)

resolve(subst(id , id ′, s)) =

 s if id =bound id ′

resolve(id) otherwise

marksof(s) = ∅
marksof(mark(id ,mark)) = marksof(id) ] {mark}
marksof(subst(id , id ′, s)) = marksof(id)

id1 =free id2 iff resolve(id1) = resolve(id2)

id1 =bound id2 iff id1 =free id2 and marksof(id1) = marksof(id2)

Fig. 11. Operations and relations on syntax

represents an identifier with a timestamp, or mark in syntax-case terminology. The other represents a
delayed alpha-renaming; this operation is applied by binding forms in the macro expansion process.

The macro expander uses an environment, called the syntactic environment, to carry the meaning of
identifiers. The environment maps a symbol to its denotation: the name of a primitive syntactic form,
a macro with its rewriting rules, or the designator variable. Determining the meaning of an identifier
involves first resolving the substitutions to a symbol, and then consulting the environment for the meaning
of the symbol.

Figure 11 defines the relevant operations on identifiers:
– resolve(id) applies all delayed alpha-renaming operations and produces the symbol for the binding that

id refers to.
– marksof(id) is the set of marks that the macro expander has applied to the identifier; identifiers in the

original program start out with no marks.
– id1 =free id2 if id1 and id2 are equivalent as references; that is, if they both refer to the same binding.
– id1 =bound id2 if id1 and id2 are equivalent for the purposes of creating new bindings; that is, if a binding

of one would capture the other.
Dybvig et al. [7] explain this program representation in greater detail, especially the algebraic properties of
marking and renaming.

The language of our model is similar to Scheme, but greatly simplified. It has only a few special forms,
including the binding forms lambda and let-syntax; we omit constants and we give application an explicit
keyword. For simplicity, we include only syntax-rules macros. Figures 12 and 13 lists the expansion rules
for macros and primitive forms. Ignore the shaded parts of the semantics for now. Determining which rule
applies to a term involves resolving its leading keyword and consulting the environment for its meaning.

A macro use is distinguished by a leading keyword that is mapped to transformation rules in the syntactic
environment. The expander uses those rules to transform the macro use into a new term. We use the
〈rules, expr〉 ⇓tr expr ′ judgment to indicate this process. We omit the definition of the transformation
relation, since it does not affect the structure of our debugger. The expander marks the expression before
transformation and then marks the transformation’s result. Identifiers in the original term get the mark
twice, and these marks cancel out (marks are self-canceling). Identifiers introduced by the rule’s template
get the mark only once, and the mark thus acts as a timestamp for the identifier’s introduction. When a
marked identifier is used in a binding construct, the alpha-renaming affects only identifiers with the same
name and the same marks.

The lambda syntactic form generates a new name for each of its formal parameters and creates a new
formals list and a new body term with the old formals mapped to the new names. Then it extends the
environment, mapping the new names to the variable designator, and expands the new body term in the
extended environment. Finally, it reassembles the lambda term with the new formals list and expanded body.
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Macro

expr = (kw form1 · · · formn) E(resolve(kw)) = 〈macro, rules〉
〈mark , S1〉 = freshmark(S) exprmark = mark(expr ,mark)

〈rules, exprmark 〉 ⇓tr expr ′mark expr ′ = mark(expr ′mark ,mark) E ` expr ′, S1 ⇓ expr ′′, S2, Tk

T = Visit(expr);EnterMacro;Mark(mark);ExitMacro(expr ′);Tk

E ` expr , S ⇓ expr ′′, S2, T

Lambda

expr = (kw formals body) E(resolve(kw)) = 〈primitive, lambda〉
formals is a list of distinct identifiers 〈newvars, S1〉 = freshnames(formals, S)

formals ′ = subst(formals, formals,newvars) body ′ = subst(body , formals,newvars)

E′ = E[formals ′ 7→ variable] E′ ` body ′, S1 ⇓ body ′′, S2, Tb

T = Visit(expr); PrimLambda; Rename(newvars); Tb; Return((kw formals′ body ′′))

E ` expr , S ⇓ (kw formals ′ body ′′), S2, T

Variable

resolve(x ) = s E(s) = variable

T = Visit(x );Variable;Return(x )

E ` x , S ⇓ x , S, T

Fig. 12. Semantics of macro expansion with expansion events

When the macro expander encounters one of the lambda-bound variables in the body expression, it
resolves the identifier to the symbol from the renaming step and discovers that the environment maps it to
the variable designator (otherwise it is a misused macro or primitive name—an error). It then returns the
original identifier.

The if and app (application) rules are simple; they just expand their subexpressions without extending
the environment.

The let-syntax form works like lambda but binds macro transformers instead of simple variables. Once
the body has been fully expanded, there is no more need for the macro bindings, so it does not recreate the
let-syntax expression.

5.2. Correctness

We model the behavior of the instrumented expander with a small syntactic change to the big-step
semantics. The shaded parts of Figs. 12 and 13 represent the synthesis of the event sequence. Given the
semantics with event sequences, we can prove a correspondence between the IR trees produced by the back
end’s parser and the extended big-step derivations.

Given a derivation ∆, we write [[∆]] for its representation as an IR tree. The mapping is the obvious
interpretation of the IR trees, discussed informally in Sect. 4.3. For example, if ∆ is a derivation for E `
expr , S ⇓ expr ′, S′ with Lambda as the final inference rule, newvars as the fresh variable names, and ∆b as
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If

expr = (kw test then else) E(resolve(kw)) = 〈primitive, if〉

E ` test , S ⇓ test ′, S1, T1 E ` then, S1 ⇓ then ′, S2, T2 E ` else, S2 ⇓ else ′, S3, T3

T = Visit(expr);PrimIf;T1;T2;T3;Return((kw test ′ then ′ else ′))

E ` expr , S ⇓ (kw test ′ then ′ else ′), S3, T

Application

expr = (kw arg1 · · · argn) E(resolve(kw)) = 〈primitive, app〉

∀i ≤ n : E ` arg i, Si−1 ⇓ arg ′i, Si, Ti

T = Visit(expr);PrimApp;T1 · · ·Tn;Return((kw expr ′1 · · · expr ′n))

E ` expr , S0 ⇓ (kw arg ′1 · · · arg ′n), Sn, T

Let-Syntax

expr = (kw ((var1 rhs1) · · · (varn rhsn)) body) E(resolve(kw)) = 〈primitive, let-syntax〉
each vari is a distinct identifier vars = (var1 · · · varn) 〈newvars, S1〉 = freshnames(vars, S)

(newvar1 · · · newvarn) = newvars ∀i ≤ n : ValidRule(rhs i) E′ = E[{newvar i 7→ 〈macro, rhsi〉}]

body ′ = subst(body , vars,newvars) E′ ` body ′, S1 ⇓ body ′′, S2, Tb

T = Visit(expr);PrimLetSyntax;Rename(newvars);Tb;Return(body ′′)

E ` expr , S ⇓ body ′′, S2, T

Fig. 13. Semantics of macro expansion with expansion events, continued

the derivation corresponding to the body expression, then

[[∆]] = LambdaNode(expr , expr ′,newvars, [[∆b]])

Every inference rule has a corresponding datatype variant, and the fields of the variants suffice to determine
the entire contents of the derivation if the initial store and environment are known. We omit the formal
definition of [[·]].

Now we are ready to state the correctness theorem. Informally, we want to prove that when the macro
expander runs, starting with the initial environment and store, and the stepper constructs an IR tree, the
IR tree corresponds to the derivation in the big-step semantics.
Theorem 1 If ∆ is a derivation of the judgment

E ` expr , S ⇓ expr ′, S′, T

then parse(T ) = [[∆]].
Proof sketch. First we show that T belongs to the language accepted by the grammar G (by Lem. 2)
and that the parse function is defined on all traces in G (Lem. 3). Consequently, the parser is well-defined
on T . Then we proceed by induction on the structure of ∆. For each inference rule, we show that the
environments and stores in subjudgments correspond to those in the recursive calls to the parser, and we
apply the induction hypothesis on those subderivations.
Lemma 2 If E ` expr , S ⇓ expr ′, S′, T , then T is in the language of G.
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Proof sketch. By induction on the derivation of the judgment. Each inference rule contains a trace
expression that corresponds exactly to a line of G.
Lemma 3 The function parse is well-defined on all event sequences in the language of G.
Proof sketch. The definition of parse covers every alternate in the production of G. The grammar is
unambiguous; therefore, a single parse rule applies to any event sequence, and parse is a function.

This result scales up to the error-handling version of the back end. We must simply add inference rules
for failed expansions, with one inference rule for each possible point of failure. We must also add the
corresponding patterns to the parse function. The structure of the proof stays the same.

6. Experience

We have implemented a macro stepper for PLT Scheme following the design presented in this paper.
The actual macro stepper handles the full PLT Scheme language, including modules, procedural macro
transformers and their accompanying phase separation [13], source location tracking, and user-defined syntax
properties. The macro stepper also handles additional powerful operations available to macro transformers
such as performing local expansion and lifting expressions to top-level definitions. The full language poses
additional complications to the macro hiding algorithm. For example, PLT Scheme partially expands the
contents of a block, e.g., the body of a lambda term, to expose internal definitions so that the block can
be transformed into a letrec expression. Advanced operations available to macro writers cause similar
problems. In most cases the macro stepper is able to cleanly adapt the macro hiding algorithm; in a few
cases the macro stepper compromises and shows extra expansion details.

The macro stepper is available in the standard distribution of PLT Scheme. Macro programmers have
been using it since its first release via nightly builds, and their practical experience confirms that it is an
extremely useful tool. It has found use in illustrating macro expansion principles on small example programs,
occasionally supplementing explanations given on the mailing list in response to macro questions. In Kathi
Fisler’s accelerated introductory course at Worcester Polytechnic Institute, a course that covers macros, the
students discovered the macro stepper on their own and found it “cool.”

Our users report that the macro stepper has significantly increased their productivity. It has helped several
fellow researchers debug large multi-module systems of co-operating macros that implement their language
extensions. One example is Typed Scheme [33], a typed dialect of PLT Scheme. The implementation of
Typed Scheme is a large project that makes intensive use of the features of the PLT Scheme macro system,
and its development benefited greatly from the macro stepper.

User reports support the importance of macro hiding, which allows programmers to work at the abstraction
level of their choice. This feature of the debugger is critical for dealing with nontrivial programs. Otherwise,
programmers are overwhelmed by extraneous details, and their programs change beyond recognition as the
macro stepper elaborates away the constructs that give programs their structure. At the same time, the
need for more structured navigation is clear, especially when debugging large modules, and this is a priority
of the continuing development of the macro stepper.

We ended up using the macro stepper for its own development. We naturally used macros to implement
the grammar transformation for handling errors, and our first attempt produced incorrect references to
generated nonterminal names—a kind of lexical scoping bug. Fortunately, we were able to use a primitive
version of the macro stepper to debug the grammar macros.
Acknowledgments We are grateful to Matthew Flatt for his help and guidance in instrumenting the
PLT Scheme macro expander. We thank Sam Tobin-Hochstadt for his feedback and bug reports. We also
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