
Advanced Macrology and the Implementation of Typed Scheme

Ryan Culpepper
Northeastern University

ryanc@ccs.neu.edu

Sam Tobin-Hochstadt
Northeastern University

samth@ccs.neu.edu

Matthew Flatt
University of Utah

mflatt@cs.utah.edu

Abstract
PLT Scheme provides an expressive programming language imple-
mentation framework in order to enable experimentation with lan-
guage design. This framework is rooted in PLT Scheme’s hygienic
macro system, but it has grown to encompass features that extend
its capabilities beyond that of traditional macro systems.

In this paper we describe the features of PLT Scheme’s language
framework and demonstrate their use with a case study. Specifi-
cally, we present the design and implementation of Typed Scheme
using the advanced language construction features of PLT Scheme.

1. Defining Languages
Since their creation, Lisp and Scheme macros have been used by
programmers to extend their programming languages with nota-
tional abbreviations and domain-specific syntactic forms. Macros
thus make it easier to read and write programs by bringing the pro-
gramming language closer to the problem domain.

Discussions of macros often leave out the challenges that arise
when macros need to work with other macros [6]. These challenges
also appear in the construction of tools such as debuggers and static
analyzers for a language defined via macros. The language tools
should operate at the language’s level of abstraction, not at the level
of the underlying Scheme code. In general, collaborating macros
and proper language abstraction require features from the macro
system beyond those needed for isolated abstractions.

Collaborating macros must share information. For example, many
syntactic forms in PLT Scheme deal with named structure types.
The macro that defines new structure types publishes relevant infor-
mation for other forms to consume. The pattern matching form [23]
uses that information to check the arity of structure patterns and
compile the pattern matching code.

Ideally, a similar sort of communication should take place between
macros and language tools. When a new language can implement
its language constructs in terms of corresponding constructs in the
host language—for example, lexical scoping in the new language
can be translated to lexical scoping in the host language—then
the tools that analyze those constructs are reusable as well. For
example, DrScheme’s Check Syntax and debugging tools [3] work
with the Algol60 [14], Lazy Scheme [1], Typed Scheme [20, 21],
and other translation-based languages [8] because of this kind of
linguistic reuse.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Copyright c© ACM [to be supplied]. . . $5.00.

Even in the ideal case, though, language tools require hints from the
macro expansion process to interpret expanded programs and cor-
relate the expanded code with the original source. Virtually every
part of DrScheme [10], from its debugging support to its graphical
analysis displays, benefits from the automatic source location infor-
mation stored in syntax objects, adapted from the recommendations
of thesyntax-casereport [7]. Source tracking is mostly automatic.
The Stepper [2], on the other hand, must reconstruct or “unexpand”
terms in the supported languages. For example, it must determine
whether a chain ofif expressions came from acond expression, a
caseexpression, anor expression, or something else. This recon-
struction requires communication between the supported languages
and the Stepper.

This paper presents the features of the language infrastructure that
support collaborating macros, language definitions, and analysis
tools. It illustrates the design and the pragmatics of these features
with the implementation of Typed Scheme, a new member of the
PLT Scheme language suite.

The paper is organized as follows. Section 2 introduces Typed
Scheme, an extension of the PLT Scheme language with types.
Section 3 presents the syntax framework that provides the foun-
dation for macro programming and language implementation in
PLT Scheme. Section 4 sketches the Typed Scheme implementa-
tion approach at the level of single definitions and expressions.
Section 5 shows how the implementation scales up to multi-module
programs. Finally, Section 6 discusses related work.

2. Typed Scheme
Typed Scheme is an explicitly-typed dialect of PLT Scheme de-
signed to support the addition of types to existing programs one
module at a time [21]. Typed modules interact with untyped mod-
ules safely and intuitively. The type system accommodates the id-
ioms of Scheme programming, minimizing the need to change
the structure of the program when adding types.1 It supports the
features of PLT Scheme, most importantly macros, modules, and
structures.

2.1 The language

The syntax of Typed Scheme differs from untyped Scheme only in
its binding and definition forms. These require type annotations for
all bound variables, structure fields, etc. A Typed Scheme program
is executed by erasing the types after type-checking and running
the residual Scheme program.

The following Typed Scheme program introduces many of the
relevant language constructs:

(define: (double[nums: (Listof Number)]) : (Listof Number)
(map(lambda: ([n : Number]) (∗ 2 n)) nums))

1 The particular features of the type system are beyond the scope of this
paper.

Thedefine:andlambda: forms parallel the traditional versions but
include type information. The rest of the code is identical to the
equivalent PLT Scheme code.

Since PLT Scheme programs use structures extensively, Typed
Scheme provides a typed structure definition form:

(define-typed-structrectangle
([width : Number] [height: Number]))

(define-typed-structcircle ([radius: Number]))

The programmer can then define new types based on those types:

(define-type-aliasshape(∪ rectangle circle))

Here, theshapetype is the union ofcircles andrectangles. The
following program illustrates how to manipulate values of this type:

(define: (area[sh: shape]) : Number
(cond [(circle? sh)

(∗ 3.1416 (circle-radius sh) (circle-radius sh))]
[else(∗ (rectangle-width sh) (rectangle-height sh))]))

Programmers can also define polymorphic functions such asfoldr:

(pdefine: (a b) (foldr [combine: (a b→ b)]
[base: b]
[items: (Listof a)]) : b

(cond [(pair? items)
(combine(car items) (foldr combine base(cdr items)))]

[elsebase]))

An important goal of Typed Scheme is to support programs that use
macros. Typed Scheme programs can define and use macros, such
as the following:

(define-syntax shape-case
(syntax-rules(circle rectangle)

[(shape-casesh
[(circle rad) circle-expr]
[(rectanglew h) rectangle-expr])

(cond [(circle? sh)
(let ([rad (circle-radius sh)])

circle-expr)]
[(rectangle? sh)
(let ([w (rectangle-width sh)]

[h (rectangle-height sh)])
rectangle-expr)])]))

Usingshape-casesimplifies our implementation ofarea:

(define: (area[sh: shape]) : Number
(shape-casesh

[(circle r) (∗ 3.1416 r r)]
[(rectanglex y) (∗ x y)]))

The type-checker can type-check the function definition even
though it uses a macro.

Typed Scheme programs can also use some—but not all—of PLT
Scheme’s standard macro libraries, even though those libraries
know nothing about Typed Scheme. For example, we can use the
match macro to simplify theareafunction:2

(define: (area[sh: shape]) : Number
(match sh

[(struct circle (rad)) (∗ 3.1416 rad rad)]
[(struct rectangle (w h)) (∗ w h)]))

2 To make supporting macros such asmatch easier, Typed Scheme includes
a trivial form of type inference.

Figure 1. Typed Scheme in DrScheme

Figure 2. Typed Module Programs

More complicated macro libraries require special cooperation with
Typed Scheme.

2.2 Using Typed Scheme

A programmer can use Typed Scheme in two different modes. First,
the programmer can select the Typed Scheme language level in
DrScheme, depicted in Figure 1. This provides the standard inter-
active top-level semantics, but with the type-checking previously
described. When expressions are evaluated, their types print out as
a part of the read-eval-print loop.

Second, the programmer can write atyped module, i.e., a PLT
Scheme module specifying Typed Scheme as the module’s lan-
guage. Figure 2 shows such a typed module. The body of the mod-
ule is Typed Scheme code, and the compiler type-checks the mod-
ule during compilation; if type-checking fails, compilation fails and
the module cannot be loaded.

A program may contain a mixture of typed and untyped mod-
ules (and even modules written in other macro-based languages).
This mixture supports the process of gradual migration to Typed
Scheme. One typed module can import values (and macros) from
another using PLT Scheme’s standardrequire form, as follows:

(require "some-typed-module.ss")

A typed module can also be used by untyped code, again using
the standardrequire form. The typed module’s exports are auto-
matically protected by dynamically-checked contracts that main-
tain the typed module’s invariants [21]. Finally, a typed module can
require an untyped module by annotating the require specification
with types:

(require/typed (lib "file.ss")
[find-files((Path→ Boolean) Path→ (Listof Path))])

The programmer-supplied types are automatically converted to
contracts and checked at the module boundary, again preserving the
typed module’s invariants. These features mean that typed modules
can be seamlessly integrated into larger programs.

3. Syntax Framework
The evolution of PLT Scheme has been guided by two major goals:

• implementing DrScheme and its teaching languages

• supporting research on programming tools and languages

These goals have pushed PLT Scheme to develop a powerful frame-
work for representing and manipulating programs.

This section presents a summary of the standard and nonstandard
features of PLT Scheme’s language framework.3 The purpose of
this section is to show how these features are a part of a comprehen-
sive language implementation framework, even those that appear to
be of marginal interest when considered in isolation.

3.1 Macros

PLT Scheme’s macro system is based on the hygienic [4, 17]
syntax-casesystem [7], named after the syntactic form it provides
for destructuring the syntax of macro occurrences. A distinguishing
aspect of this system is its use of a syntax object system, a rich
datatype for representing program fragments.

Unlike thesyntax-rules facility [16], syntax-casepermitsproce-
dural macros, i.e., macros that use Scheme code to compute the
macro’s transformation. Procedural macros have several major ad-
vantages over R5RS’s restricted pattern-rewriting macros:

• Procedural macros can perform computation at compile time
using Scheme’s natural computation mechanisms. In contrast,
many computations withsyntax-rules require writing macros
in a contorted style, using the macro expander as a trampoline,
resulting in many artificial macro transformation steps [15].
Furthermore, many computations are simply impossible with
syntax-rulesbecause the pattern-rewriting language is insuffi-
ciently expressive.

• Procedural macros allow the programmer to detect and report
syntax errors. Macro writers can enforce constraints on legal
syntax, such as a given list of identifiers must not contain du-
plicates; detect when those constraints are violated; and report
errors in an appropriate, context-specific fashion. In contrast,
pattern-rewriting macros have only two kinds of errors: failure
to match any pattern and misuse of a primitive form.

• Thesyntax-casemacro system allows macros to construct iden-
tifiers that capture references not introduced by the macro—
often called “breaking hygiene.”

The macro definition in Figure 3 demonstrates the major capabili-
ties ofsyntax-casemacros. Its purpose is to create procedures that
access and update a shared, hidden variable. For example, a pro-
grammer can write (define-getter+setter balance) to create defi-
nitions forget-balanceandset-balance!.

The macro defines a procedural abstraction (symbol-append) to
help construct names. Within thesyntax-caseclause, the macro
checks that the given name is an identifier (a syntax object con-
taining a symbol); otherwise, it raises an error. Then it uses the
macro system’sdatum→syntax-objectprocedure together with its
ownsymbol-appendabstraction to construct the names of the getter

3 While some of the features are PLT specific, many are supported in some
form by other Scheme implementations.

(define-syntax(define-getter+setter stx)
;; symbol-append : symbol ...→ symbol
(define(symbol-append. syms)

(string→symbol
(apply string-append(map symbol→string syms))))

(syntax-case stx()
[(define-getter+settername init-value)
;; constraint checking:
(unless(identifier?#’name)

(raise-syntax-error’define-get+set
"expected identifier"
#’name))

;; transformation:
(with-syntax

([getter
(datum→syntax-object
#’name
(symbol-append’get-

(syntax-object→datum#’name)))]
[setter
(datum→syntax-object
#’name
(symbol-append’set-

(syntax-object→datum#’name)
’ !))])

#’(define-values (getter setter)
(let ([name init-value])

(values (lambda () name)
(lambda (new-value)

(set! name new-value))))))]))

Figure 3. A syntax-casemacro

and setter procedures. This macro breaks hygiene, because the hy-
giene principle states that introduced names only capture references
to the same name that are introduced by the same macro transfor-
mation.

3.2 Modules, or You Want it When, Again?

The PLT Scheme module system [13] allows programmers to group
definitions, use imports and exports to control the scope of names,
and specify the dependencies between modules. The presence of
macros complicates the notion of dependence between modules.

In the presence of procedural macros, a compiler must execute
parts of a program in order to deal with the remainder of the pro-
gram. This blurs the line between compilation and execution. In
particular, an interpreter may draw the line in a different place than
the compiler, requiring programmers to debug their compiled pro-
gram after they have already debugged their interpreted program.
To eliminate this potential for inconsistency, the PLT Scheme mod-
ule system provides uniform behavior in both interactive and batch-
compilation mode by making module dependencies explicit.

Modules are compilation units, and every module must be compiled
before it can be used. Modules contain declarations of their direct
dependencies. When a module is compiled, the module system uses
those declarations to determine the portions of existing modules
that must be executed to support the compilation of the current
module. If a macro transformer depends on a value definition,
the macro’s module must declare a “for-syntax” dependency on
the value definition’s module. Scoping rules prevent access from
macros to undeclared run-time dependencies, and the compiler
creates separate instantiations of declared dependencies to prevent
interference across separate compilations.

(modulemacro-util mzscheme
(provide check-for-duplicate-identifier)
(define(check-for-duplicate-identifier ids) omitted))

(module rec mzscheme
(require-for-syntax macro-util)
(define-syntax(recur stx)

(syntax-case stx()
[(recur name([var init] . . .) . body)
(begin

(check-for-duplicate-identifier#’(var . . .))
#’(letrec ([name (lambda (var . . .) .body)])

(name init . . .)))]))
(define(build-list n f)

(recur loop ([i 0])
(if (< i n)

(cons(f i) (loop (+ i 1)))
null))))

Figure 4. Four kinds of references

3.2.1 Split environments

Syntactically, a module declaration contains the module’s name, a
module reference specifying the language that the module is written
in, and a sequence of definitions and expressions:

(modulemodule-name initial-language
module-contents· · ·)

Denotationally, a module consists of two code parts: a compile-
time component and a run-time component. The compile-time part
consists of the syntax definitions. The run-time part consists of
ordinary definitions and expressions. In addition, a module has a
set of dependencies on other modules.

The compiler keeps separate environments for the compile-time ex-
pressions and run-time expressions. If a module defines a procedure
as a run-time value, a macro transformer in the same module cannot
usethat procedure; the binding is unavailable in the compile-time
phase. The macro can, of course, expand into code thatrefers to
the procedure. Likewise, a binding in the compile-time phase can-
not be used in the run-time phase. This phase separation permits
the compiler to compile a module without also executing its entire
contents.4

The two environments yield two kinds of module dependence and
thus two distinct module import forms. Therequire form im-
ports bindings into the run-time environment, and therequire-for-
syntax form imports bindings into the compile-time environment.

Macros bridge the gap between the two phases. The implementa-
tion of a macro is a compile-time expression, but the macro defi-
nition extends the environment for run-time expressions. To under-
stand this idea, it is important to distinguish between the notions
of macro versus value bindings from the notions of compile-time
versus run-time environments.

The modules in Figure 4 illustrate the four different possibilities.
In the context of therec module,check-for-duplicate-identifieris a
value binding in the compile-time environment; thus, it is available
for use in the body of therecur macro definition. Even though
check-duplicate-identifieris a “compile-time procedure,” it is not

4 The same name may have meanings in both phases simultaneously. For
example, modules written in themzschemelanguage automatically import
all primitive bindings into both phases.

a macro. In fact, it cannot be used in run-time expressions at all.
In contrast,recur is a macro binding in the run-time environment.
It is bound to a compile-time value, but the binding is available
to run-time expressions such as the definition ofbuild-list. The
occurrence ofsyntax-caserefers to a macro binding in the compile-
time environment. Finally, the definition ofbuild-list creates a value
binding in the run-time environment.

Compilation of a module involves executing its dependencies5 and
expanding uses of macros in the module’s body. The dependen-
cies include the compile-time part of the module’s initial language
module, the compile-time part of every module imported withre-
quire, and both compile-time and run-time parts of every module
imported withrequire-for-syntax.

The rules for compilation (and also for invoking a module’s com-
pile time part) are as follows:

• For everyrequire import, including the initial language mod-
ule, invoke that module’s compile-time part in the same phase.

• For every require-for-syntax import, invoke that module’s
compile-time and run-time parts in the next higher phase.

If a module imported twice, once withrequire and once with
require-for-syntax, the two corresponding invocations of the mod-
ule are separate. They do not share mutable state. The module sys-
tem uses phase numbers to distinguish the different instances. Fi-
nally, a module is only invoked once per phase, per compilation.
Multiple modules that depend on a single module in the same phase
share a single invocation of that module and its state.

3.2.2 Compilation independence

True separate compilation is impossible in a module system that
supports the import and export of macros. Instead, the module
system has a principle of compilation independence:

The compilation of a module depends only on the compiled
forms of the modules that it (transitively) requires.

This principle has two consequences:

• The compilation of two modules, neither of which transitively
requires the other, should produce the same two results no
matter which is compiled first, or whether they are compiled
in parallel.

• The compilation of a module does not depend on side effects
that occurred during the compilation of modules that it transi-
tively requires. This has important implications for the use of
side-effects at compile time.

The compiler effectively creates a new store for each module that it
compiles. Each compilation gets a new execution of all supporting
module code. Since the result of the compilation process is nothing
but a body of code, the states of mutable variables and objects
created during the compilation process of any module are discarded
at the end.

The following set of modules illustrates the interaction between
side-effects and compilation:

(modulestorage mzscheme
(definestorage’())
(define(add! x) (set!storage(cons x storage)))
(provide storage add!))

(modulememory mzscheme
(require-for-syntax storage)

5 If the module depends on modules that are not already compiled, they are
automatically compiled when the dependency is detected.

storage
phase 0
of compilingstorage
expand macros, invoke compile-time parts

storage
phase 1
of compilingmemory
invoke compile-time and run-time parts

memory
phase 0
of compilingmemory
expand macros, invoke compile-time parts

storage
phase 1
of compilingmore
invoke compile-time and run-time parts

memory
phase 0
of compilingmore
invoke compile-time part

more
phase 0
of compilingmore
expand macros, invoke compile-time parts

storage
phase 1
of execution
invoke compile-time and run-time parts

memory
phase 0
of execution
invoke compile-time and run-time parts

more
phase 0
of execution
invoke compile-time and run-time parts

Figure 5. Module invocations

(define-syntax(remember stx)
(syntax-case stx()

[(remembersym)
(begin (add! (syntax-object→datum#’sym))

(with-syntax ([syms storage])
#‘(begin (display (quote syms))

(newline))))]))
(remembera)
(rememberb))

The first module defines two variables. The second module ac-
cesses the variables at compile time, so it imports the first module
via require-for-syntax. It defines aremember macro that adds a
symbol to the remembered list and generates code to print out the
updated list of remembered symbols. Then it uses the macro twice.
At the end of compiling thememorymodule, thestoragevariable
has the value (b a). Executing thememorymodule prints out the
lists (a) and (b a), as expected.

Consider the following addition to the program:

(module inspect-storage mzscheme
(require storage)
(require memory)
(display storage) (newline))

When this module is executed, the last line it prints out is (), not (b
a), because therun-timeinstance of thestoragemodule is distinct
from thecompile-timeinstance. That is, side-effects do not cross
phases.

Now consider this further addition to the program:

(modulemore mzscheme
(require memory)
(rememberc))

When this module is executed, the last line it prints out is (c), not
(c b a). This result often surprises macro programmers. Many of
them expect the final line to be (c b a). It seems to them as if
the effects inmemoryoccur and are subsequently unwound behind
their backs. Programming with compile-time side effects can result
in unexpected behavior—or lack of behavior—unless programmers
recognize the forgetful nature of the compilation process.

The reason that the (remember c) in more prints just (c) is that
morewas compiled with a fresh instance ofstorage(initially the
empty list), and because executing the compile-time part ofmemory
does not change that value. The variable is updated duringmacro

expansion; the side-effects are not present in the compiled form of
memory:

(compiled-modulememory
(require mzscheme)
(require-for-syntax storage)
(define-syntax(remember stx) omitted)
(begin (display’(a)) (newline))
(begin (display’(b a)) (newline)))

Figure 5 shows all of the module invocations involved in compiling
and executing this program. Each box represents a module invoca-
tion, and the text at the bottom of each box indicates what parts of
the module are executed. Each column represents a shared store;
effects in one column are not visible in another column.

3.2.3 Persistent effects

The compilation rules of the module system yield a design pattern
for expressing persistent effects. Compile-time side effects are tran-
sient. Only the code in the compiled module is permanent. Thus,
the way to express a persistent effect is to make it part of the mod-
ule. Here’s one way to do it:

(modulememory mzscheme
(require-for-syntax storage)
(define-syntax(storage-now stx)

(syntax-case stx()
[(storage-here)
(with-syntax ([syms storage])

#’(quote syms))]))
(define-syntax(remember stx)

(syntax-case stx()
[(remembersym)
#’(begin (define-syntax (add! (quote sym)))

(display (storage-now))
(newline))]))

(remembera)
(rememberb))

The effect is not executed within the macro, but the macro expander
executes the resultingdefine-syntax form when it continues ex-
panding the module body, so the effect of the first addition to the
list still occurs before the secondremember is expanded. This ver-
sion introduces a helper macro,storage-now, to retrieve the value
of storageafter the update.

Since the compile-time part of a compiled module includes all of
the macro definitions, the side-effect is preserved:

(compiled-modulememory
(require mzscheme)
(require-for-syntax storage)
(define-syntax(storage-now stx) omitted)
(define-syntax(remember stx) omitted)
(define-syntax 1 (add! ’a))
(display’(a)) (newline)
(define-syntax 2 (add! ’b))
(display’(b a)) (newline))

The calls toadd! are executed whenevermemoryis required for
the compilation of another module. Thus they are executed when
moreis compiled (refer back to Figure 5), so the storage is already
set to (b a) when the use ofremember in moreis expanded. Thus,
executing the new version of the program prints (c b a), as expected.

As a matter of readability, thebegin-for-syntax form accomplishes
the same effect as the awkward use ofdefine-syntaxwith a throw-
away name. Usingbegin-for-syntaxalso explicitly signals the pro-
grammer’s intent to generate an expression that creates a persistent
effect.

3.3 Macro protocols

Some language extensions involve not just a single macro defini-
tion, but a collection of collaborating macros, or one macro whose
multiple uses collaborate. Those collaborating macros need ways
to share information at expansion time.

For example, any datatype created withdefine-struct can be rec-
ognized and destructured usingmatch, as follows:

(define-structposn(x y))

(define(dist-to-origin p)
(match p

[(struct posn(a b))
(sqrt (+ (sqr a) (sqr b)))]))

Thedefine-structmacro givesmatch access to the names ofposn’s
predicate and accessor functions, andmatch uses those names in
the expansion of the pattern to test the value, extract its contents,
and bind the results to the pattern variablesa andb.

PLT Scheme provides three mechanisms for communication be-
tween macros: static bindings, side-effects, and syntax properties.
Each mechanism fits a particular form of communication.

3.3.1 Static binding

PLT Scheme generalizesdefine-syntaxto bind names to arbitrary
compile-time data. The definition of theposnstructure above pro-
duces something similar to the following:

(begin
(define-values(make-posn posn? posn-x posn-y) omitted)
(define-syntax posn

(list #’make-posn
#’posn?
(list #’posn-x #’posn-y))))

Despite the use ofdefine-syntax, the definition ofposn is not
a macro, as its value is not a transformer procedure. The static
information it carries is accessible from other macros (such as
match) via thesyntax-local-valueprocedure.

With static binding, the availability of information is tied to the
name it is bound to. Static binding also relies on the ability to define
the name; it cannot attach information to a name that is already

bound. Still, static binding is the most common mechanism for
defining macro protocols in the PLT Scheme libraries, including
protocols for structs and component signatures [5].

3.3.2 Side-effects

Side-effects are commonly used to provide implicit channels of
communication between collaborating run-time components. They
are just as capable of providing such channels at compile time
for macros, provided the programmer recognizes the difference
between ephemeral and persistent effects and uses the appropriate
technique.

3.3.3 Syntax properties

Dybvig et al.’s [7] syntax datatype extends S-expressions with the
hygienic binding information and source location tracking. PLT
Scheme addssyntax properties, key-value pairs of arbitrary asso-
ciated data, as a way of attaching information to particular terms.
By default, syntax properties are simply preserved by macros and
primitive syntactic forms, so protocols defined via syntax proper-
ties generally do not interfere if they choose different keys. Access-
ing information contained in syntax properties requires only access
to the term that carries it and the key to the property. Syntax proper-
ties are available even to observers that cannot access the expansion
environment (necessary to access static bindings and compile-time
variables).

For these reasons, syntax properties are well-suited to conveying
information from macros to code analyzers that examine programs
after they have been expanded to core Scheme. DrScheme’s Check
Syntax tool examines expanded programs to graphically display the
program’s binding structure, and it uses syntax properties to supple-
ment binding information. For example, the expansion ofmatch
uses the information bound to theposn name, but the structure
name does not occur in the expansion. Thematch macro leaves
a ’disappeared-use syntax property on its expansion telling Check
Syntax to color the occurrence ofposnas a reference and connect
it to the corresponding definition. DrScheme’s teaching languages
also use syntax properties to communicate with tools like the Step-
per.

Macros can introduce and examine syntax properties in their argu-
ments using thesyntax-propertyprocedure.

3.4 Local expansion

Some special forms must partially expand their bodies before pro-
cessing them. For example, the primitive forms such aslambda
handle internal definitions by partially expanding each form in the
body to detect whether it is a definition or an expression. The defi-
nitions are collected and transformed into aletrec expression with
the remainder of the original expressions in the body.

Macros can perform the same kind of partial expansion via the
local-expandprocedure.

3.5 Compilation-unit hooks

There are two basic compilation scenarios in PLT Scheme. In
interactive mode, the compiler receives expressions from the read-
eval-print loop. In module mode, the compiler processes an entire
module at once. For each mode, the compiler provides a hook so
the macro system can be used to control compilation of that body
of code.

3.5.1 Top-level transformers

The read-eval-print loop automatically wraps each interaction
with the #%top-interaction macro. By defining a new#%top-
interaction macro, a programmer can customize the behavior of
each interaction.

(module typed-scheme mzscheme
(provide (renametop-interaction #%top-interaction))
(define-syntax(top-interaction stx)

(syntax-case stx()
[(top-interaction . term)
(let ([expanded-term

(local-expand#’term ’top-level null)])
(type-check-top-level expanded-term)
expanded-term)]))

omitted)

Figure 6. typed-schememodule

3.5.2 Module transformers

The macro expander processes a module from top to bottom, par-
tially expanding to uncover definitions,require and require-for-
syntax forms, andprovide forms. It executes syntax definitions
and module import forms as it encounters them. Then it performs
another pass, expanding the remaining run-time expressions. The
module system provides a hook, called#%module-begin, that al-
lows language implementations to override the normal expansion
of modules.

The module transformer hook is typically used to constrain the
contents of the module or to automatically import modules into
the compile-time environment. For example, themzschememodule
transformer inserts (require-for-syntax mzscheme) at the begin-
ning of the module body, so they automatically get themzscheme
bindings in the compile-time phase.

The module hook technique has been used before in language
experimentation. Specifically, Pettyjohn et al. [19] prototyped a
language for programming continuation-based web servlets. This
prototype was the first evidence that the module transformer is
useful for general-purpose language experimentation.

4. Typing Terms
The implementation of Typed Scheme illustrates like no other lan-
guage design experiment the power of PLT Scheme’s macro sys-
tem. In this section, we explain the process for type-checking a
single definition or expression, with a focus on type annotations
and the use of type environments. The following section extends
the implementation to handle modules.

Typed Scheme was designed to interoperate with PLT Scheme’s
existing macro and module systems. In particular, typed programs
should be able to use existing macros (provided they produce type-
correct code) and define and use new macros. Since it is gener-
ally impossible to derive type rules for arbitrary macros, the type-
checker must analyze the program after expansion has eliminated
all occurrences of macros and reduced the program to core syntax.

The type-checker hooks into the compilation process as a macro
using the#%top-interaction interface described in Section 3.5.
The type-checking macro receives the original unexpanded pro-
gram, and it callslocal-expandto fully expand the program for
analysis. The type-checker then either approves the expanded pro-
gram or raises an error, aborting compilation. Figure 6 shows the
beginning of thetyped-schemelanguage module.

The type-checker has rules for each primitive syntactic form. It
knows how to assign types to Scheme constants. It also knows
the types of the Scheme primitive operators. When it encounters
a programmer-introduced variable, however, it needs to find the
type of the variable, and although that information is present in the
original program, type information is not part of fully expanded,

(define-syntax(lambda: stx)
(syntax-case stx(:)

[(lambda: ([formal : formal-type] . . .) . body)
(with-syntax ([(typed-formal. . .)

(map
(lambda (id type)

(syntax-property id’type-label type))
(syntax→list #’(formal . . .))
(syntax→list #’(formal-type . . .)))])

#’(lambda (typed-formal . . .) .body))]))

(define-syntax(define: stx)
(syntax-case stx(:)

[(define:var : type expr)
(identifier?#’var)
(with-syntax ([tvar (syntax-property#’var ’type-label #’type)])

#‘(define #,tvar expr))]
[(define: (f [formal formal-type] . . .) : result-type. body)
#’(define: f : (formal-type . . . → result-type)

(lambda: ([formal formal-type] . . .) . body)))])

Figure 7. Typed definition and binding forms

core Scheme code. The rest of this section discusses the treatment
of variable types and the communication between Typed Scheme’s
binding forms and its type-checker.

4.1 Variables

Typed Scheme requires type annotations on bound variables; type-
checking depends on that information. Consequently, the typed
binding forms and the type-checker employ a protocol regarding
the communication of variable types.

Type annotations are local to the terms where they appear. They
must be robust in the face of local expansion and re-expansion.
Since the type-checker works on the fully-expanded program, it
makes sense to put the type annotations in the program. At the same
time, the result of expansion is a core Scheme term, and Scheme’s
primitive syntactic forms are unaware of types and do not accept
Typed Scheme’s typed binding syntax. Syntax properties provide
an appropriate method for implementing the protocol by attaching
type information to terms.

The Variable Protocol: Every typed binding form deco-
rates its declared variables with a type attached to the ’type-
label syntax property of the bound identifiers.

Typed Scheme implements the variable protocol by defining the
typed binding forms such aslambda: as macros that convert the
[variable : type] variable syntax into primitive binding forms with
the types attached to the ’type-label syntax property of the variable
names. Figure 7 shows the definition of typed binding macros.
The lambda: macro expands into the primitivelambda form. For
each formal parameter name, it creates a new syntax object with a
’type-label property holding the type. Likewise, thedefine: macro
handles typed definitions. The first clause handles the simple case
with just a name being bound to a value. The second clause handles
the function definition syntax by desugaring it to adefine: form
with an explicit lambda: form. It also synthesizes the function
type from the argument types and the result type, adding it to the
expanded definition.

The type-checker, at the other end of the protocol, consumes the
syntax properties produced by the typed binding forms. When
the type-checker encounters a binding form, it scans the bound
variables and extracts their types with theget-id-typeprocedure:

(moduleenv mzscheme
(provide (all-defined))

;; An environment is a (list-of binding).

;; A binding is (make-binding identifier type).
(define-structbinding(id type))

;; the-type-env : environment
;; Associates global variables with their types.
;; Initially contains types for the mzscheme primitives.
(definethe-type-envomitted)

;; declare-type : identifier type→ void
;; Add a type association to the global type environment.
(define(declare-type! id type) omitted)

;; empty-env : environment
;; The empty lexical environment.
(defineempty-env null)

;; extend-env : environment (list-of binding)→ environment
(define(extend-env env bindings) omitted)

;; lookup-type : lexical-env identifier→ type
;; Searches the lexical environment, then the global environment.
(define(lookup-type env var) omitted))

Figure 8. Type Environment

;; get-id-type : identifier→ type
(define-for-syntax(get-id-type id)

(let ([type(syntax-property id’type-label)])
(unlesstype(raise-missing-type-error id))
type))

The type-checker maintains a two-part type-environment. One part
holds the types of global variables, including variables defined via
define: and all primitive variables. The other part holds the lexical
variables, such as those bound bylambda: and other local binding
forms. Figure 8 shows the outline of the environment module.
The declare-type!operation updates the global type environment;
extend-envextends the local type environment; andlookup-env
finds the type of an identifier, searching first the local bindings then
the global bindings.

The type-checker consumes the information attached to bound vari-
ables. Figure 9 lists the code for the type-checker. When the type-
checker encounters a definition, it extracts the type annotations
from the bound identifiers and extends the type environment with
the new type association. It finally checks that the declared type
matches the type computed for the right-hand side expression.
When the type-checker encounters an expression, it switches to ex-
pression mode.

The type-check-exprprocedure computes the type of the expres-
sion. In the simplest case, variable reference, the type-checker just
looks up the type in the type environment. If the variable is not
present, thelookup-envprocedure raises an error. When the type-
checker sees alambda form, it gathers the types of the bound vari-
ables and extends the type environment before checking the body
in the extended environment. It also uses the types of the formals,
in addition to the computed type of the body, to create the type of
the function. Finally, the application case involves finding the type

;; type-check-top-level : syntax→ void
(define-for-syntax(type-check-top-level form)

(syntax-caseform (define)
[(definevar expr)
(let∗ ([var-type(get-id-type#’var)])

(declare-type!#’var var-type)
(let ([expr-type(type-check-expr#’expr empty-env)])

(check-type var-type expr-type form)))]
[expr
(type-check-expr#’expr empty-env)]))

;; type-check-expr : syntax lexical-env→ type
(define-for-syntax(type-check-expr expr env)

(syntax-caseexpr (lambda #%app omitted)
[var
(identifier?#’var)
(lookup-type env#’var)]

[(lambda (formal . . .) body)
(let∗ ([formal-types

(map get-id-type(syntax→list #’(formal . . .)))]
[formal-bindings
(map make-binding

(syntax→list #’(formal . . .))
formal-types)]

[body-type
(type-check-expr#’body

(extend-env env formal-bindings))])
(make-function-type formal-types body-type))]

[(#%app op arg. . .)
(let ([op-type(type-check-expr#’op env)]

[arg-types
(map(lambda (arg) (type-check-expr arg env))

(syntax→list #’(arg . . .)))])
(check-function-type op-type#’op)
(check-types(function-type-params op-type)

op-types
expr)

(function-type-result op-type))]
omitted))

These functions are defined usingdefine-for-syntax, which creates a value
binding in the compile-time environment, so thetop-interaction macro can
use the procedures.

Figure 9. The type-checker

of the operator, verifying that it is a function type of the right arity,
and checking the expected parameter types against the actual pa-
rameter types. If the application is valid, the result is the function’s
result type.

5. Typing Modules
Type-checking a typed module is more complicated than type-
checking an isolated definition or expression. Module bodies may
refer to variables that are neither primitive nor locally-defined,
but imported from other modules. Furthermore, module exports
must be protected from misuse in other modules, both typed and
untyped.

As with a single definition or expression, type-checking a mod-
ule involves fully expanding the contents of the module and then
analyzing the expanded contents. Typed Scheme uses the module
transformer hook to type-check the contents of the module.

The variable protocol handles variables whose definitions or bind-
ings occur within the body of the module, but typing imported vari-
ables requires additional communication between typed modules.
The revised protocol affects the way a typed module’s exports are
compiled.

There are three kinds of module interactions that typed modules
can participate in:

1. A typed module requires an untyped module.

2. A typed module requires another typed module.

3. An untyped module requires a typed module.

The first case simply requires a method of importing untrusted code
in such a way that it cannot break the type system’s invariants,
which demands appropriate input from the programmer. The other
two cases determine the behavior of a typed module’s exports.
Those two cases essentially demand different behaviors from a
typed module depending on the context it is imported into.

This section explains how Typed Scheme interacts with the module
system. We begin with the simplest case, a typed module importing
untyped code. This case can be explained in terms of just the import
statement. Then we consider the case of a typed module importing
another typed module, and we develop the basic typed-module
framework. Finally, we show how to extend the behavior of exports
to support the case of importing a typed module into an untyped
context.

5.1 Untyped to Typed

Typed modules cannot use untyped modules without additional
protection.6 Instead, typed modules use a specialrequire/typed
form to import names at specific types. Therequire/typed form
wraps the untyped imports with contracts [9] that enforce the
programmer-supplied types. It also adds the name to the type envi-
ronment with the specified type.

For example, the following use ofrequire/typed imports thefind-
filesprocedure from a standard library module:

(require/typed (lib "file.ss")
[find-files((Path→ Boolean) Path→ (Listof Path))])

It is equivalent to the following code fragment:

(require (rename(lib "file.ss") unsafe-find-files find-files))TRUST

(define:find-files: ((Path→ Boolean) Path→ (Listof Path))
(contract (type→contract

((Path→ Boolean) Path→ (Listof Path)))
unsafe-find-files
’find-files
’<typed-scheme>)TRUST)

The TRUST annotation indicates a syntax property that directs the
type-checker to accept the labeled expression as-is. Thecontract
expression wraps the unsafe version of thefind-filesprocedure with
a contract derived from the given type. The last two arguments
indicate the parties involved in the contract; if something goes
wrong, one of the parties is blamed.

Thefind-filescontract checks the procedure’s arguments and result.
If the untyped version offind-files returns a non-path result, the
contract catches it and blames ’find-files before the faulty value
can interfere with the typed program. The first argument contract

6 However, typed modules can safely import untypedmacrolibraries (such
asmatch) if the macros do not expand into untyped, non-primitive vari-
ables.

is itself a higher-order contract, so the contract system wraps the
function passed tofind-fileswith a contract corresponding to the
(Path→ Boolean) type. This contract prevents the untypedfind-
files from calling the function with faulty arguments; if it does so,
the contract system raises an error and blames ’find-files for the
violation. The second argument contract is a first-order contract.
It can only be violated if typed code supplies an argument of the
wrong type, which cannot happen if the type system is sound.
Finally, if find-fileswere to return something other than a list of
paths, the contract system would stop the program and thus protect
the typed code that expects to process the result.

5.2 Typed to Typed

Typed Scheme installs a#%module-begin macro that first per-
forms the normal module expansion (usinglocal-expand), analyzes
the result, and produces a module body that follows a newmodule
variable protocolthat provides the type-checker with the types of
module variables:

(define-syntax(module-begin stx)
(syntax-case stx()

[(module-beginform . . .)
(type-check-module-body
(local-expand#’(#%plain-module-begin form . . .)

’module-begin
null))]))

Unlike the type-checking procedure for top-level forms,type-
check-module-bodynot only type-checks the module body; it also
transforms the code to produce the module body.

When one typed module requires another typed module, type-
checking the first module requires knowing the types associated
with the all of the definitions of the second module. The type-
checker needs the types for all of the definitions, even the unex-
ported ones, because an imported macro can expand into references
to the unexported variables of the module it was defined in. This re-
quires a new protocol, the module variable protocol.

Let us consider the protocol mechanisms introduced in Section 3.
An imported identifier does not carry any syntax properties, so
syntax properties alone are insufficient. Static binding provides a
partial solution: instead of directly providing a variable, a typed
module could instead provide a macro that expands into a use of
the actual variable. The macro would place a type annotation on
the reference as a syntax property. The problem with the static
binding approach is that it annotates only the references that cross
the public import/export boundary. Variable references introduced
by imported macros, however, do not go through the static bind-
ing mechanism; they refer directly to the module variables. Since
Typed Scheme aims to support macros, static binding is not a viable
approach.

That leaves compile-time side effects. We extend the type environ-
ment table to include all known typed-module definitions instead of
just primitives and local definitions. A typed module relies on the
global type environment to contain types for all variables that ap-
pear within its body, and it guarantees that its client modules have
access to its own type associations.

The Module Variable Protocol: During the compilation
of a typed module, the global type environment contains
bindings for all definitions in all typed modules transitively
required by the module being compiled.

Since a module’s contributions to the global type environment need
to be present during the compilation of every module that depends
on it, we use the persistent effect pattern described in Section 3.2.3.

In addition to verifying the correctness of the module’s contents,
the type-check-module-bodyprocedure also appends compile-time
type declarations to the end of the module. We illustrate the effect
of the module transformer on the following modules:

(moduleone typed-scheme
(provide one)
(define:one: number1))

(moduleplus typed-scheme
(provide plus1)
(define: (plus1[n : number]) : number

(+ n one)))

The first module passes the type-checker, which also adds a type
declaration foroneto the end of the compiled module:

(compiled-moduleone
(require typed-scheme)
(provide one)
(defineone1)
(begin-for-syntax

(declare-type!#’one (type number))))

The reference todeclare-type!was inserted by a macro from the
typed-schememodule. Even thoughone does not import theenv
module directly, the procedure is available indirectly throughtyped-
scheme. Sincetyped-schemeimportsenvvia require-for-syntax, it
is correct to usedeclare-type!within the compile-time part ofone.

When the compiler encounters theplus module, the module sys-
tem invokes the compile-time part oftyped-scheme, initializing the
global type environment with the primitive bindings only. Then
when the compiler encounters the import ofone in the module
body, it invokes the compile-time part of theonemodule, which
then loads its type declaration foroneinto the type environment.

Theplusmodule includes just one new definition, and the module
transformer adds the corresponding declaration to the module:

(compiled-moduleplus
(require typed-scheme)
(provide plus)
(defineplus(lambda (n) (+ n 1)))
(begin-for-syntax

(declare-type!#’plus (type (number→ number)))))

The two modules are able to communicate usingtyped-scheme’s
type environment because the compile-time parts of theonemodule
and theplusmodule share a single invocation oftyped-schemeand
thus a single invocation of theenvmodule.

Figures 10 and 11 show the implementation of typed modules and
the module variable protocol.

5.3 Typed to Untyped

When a typed module is imported into another typed module, it
must provide its definitions and load the type declarations into
the global type environment. The type-checker ensures that the
exported values are used safely, so there is no need for run-time
checking or wrapping.

In contrast, when a typed module is imported into an untyped mod-
ule, it should protect its exports so that the untyped context can-
not destroy its invariants. As in the “untyped to typed” case, we
use contracts to enforce the type constraints of the definitions. For
any defined variable, it is a simple matter to generate a definition
that wraps the variable in the protection of the appropriate contract.

(module typed-scheme mzscheme
(require-for-syntax type-check)
(provide (renamemodule-begin #%module-begin)

(renametop-interaction #%top-interaction)
(all-from-except mzscheme

#%module-begin #%top-interaction)
define:
lambda:)

(define-syntax(module-begin stx)
(syntax-case stx()

[(module-beginform . . .)
(type-check-module-body
(local-expand#’(#%plain-module-begin form . . .)

’module-begin
null))]))

(define-syntax top-interaction omitted)
(define-syntax define: omitted)
(define-syntax lambda: omitted))

Figure 10. Thetyped-schememodule

For example, theplus module above has aplus1 procedure with
type (Number→ Number). Given that information, we can gener-
atedefensive-plus1:

(define/contractdefensive-plus1
(type→contract(Number→ Number))

plus1)

The define/contract form is like a definition that usescontract
explicitly, except that it automatically computes the blame parties.

A typed module, then, needs to provide one set of definitions to
typed contexts and another set of definitions to untyped contexts.
Of course, no module can actually change the contents of itspro-
vide clauses once it is compiled. Instead, it can provide a set of
indirection macros that choose whether to expand into the trust-
ing or defensive versions of exported names, assuming they can
determine whether the importing context is typed or untyped. PLT
Scheme providesrename transformersas a convenient way of writ-
ing such identifier-to-identifier translations.

Continuing theplus module example, the module transformer
rewrites

(provide plus1)

into the following indirection definition and renamed-provide
clause:

(define-syntax export-plus1
(if omitted ;; Will it be used in a typed context?

(make-rename-transformer#’plus1)
(make-rename-transformer#’defensive-plus1)))

(provide (renameexport-plus1plus1))

The indirection definitions depend on some way of determining
whether the context they are imported into is typed or untyped. The
context that matters is the module currently being compiled. If the
require chain includes intervening modules, they have already been
compiled, and references within the compiled modules are already
resolved to the right version of the exports. Thus, the problem boils
down to determining whether the module currently being compiled
is a typed module.

The property that distinguishes a typed module is that it specifies
typed-schemeas its language module, and thus its module body is

(module type-check mzscheme
(require env)
(provide (all-defined))

;; type-check-top-level : syntax→ void
(define(type-check-top-level form) omitted)

;; type-check-module-body : syntax→ syntax
(define(type-check-module-body form)

(syntax-caseform ()
[(module-begintop-level-form. . .)
(let ([definition-types

(get-definition-types
(syntax→list #’(top-level-form . . .)))])

(for-each(lambda (def)
(declare-type!(binding-id def)

(binding-type def)))
definition-types)

(for-each type-check-module-level-form
(syntax→list #’(top-level-form . . .)))

;; Generate declarations to reload types into the
;; global type environment
(with-syntax ([(type-declaration. . .)

(map binding→type-declaraction
definition-types)])

#’(module-begin top-level-form . . .
type-declaration . . .)))]))

;; type-check-module-level-form : syntax→ void
(define(type-check-module-level-form form) omitted)

;; type-check-expression : syntax environment→ type
(define(type-check-expression expr env) omitted)

;; get-definition-types : (list-of syntax)→ (list-of binding)
(define(get-definition-types forms)

(if (null? forms)
null
(syntax-case(car forms) (define)

[(definename rhs)
(cons(make-binding#’name (get-id-type#’name))

(get-definition-types(cdr forms)))]
[(get-definition-types(cdr forms))])))

;; get-id-type : identifier→ type
(define(get-id-type id) omitted)

;; binding→type-declaration : binding→ syntax
(define(binding→type-declaraction b)

(with-syntax ([id (binding-id b)]
[type-expr
(type→type-expression(binding-type b))])

#’(begin-for-syntax (declare-type! #’ id type-expr))))

;; type→type-expression : type→ syntax
(define(type→type-expression type) omitted))

Figure 11. Type Checker

under the control of the typed module transformer. Given that, it is
critical to understand the exact order of events in the compilation
process:

1. The compiler invokes the initial language module’s compile-
time part.

2. Then, it executes the initial language module’s module trans-
former on the body of the module being compiled.

3. As the compiler encountersrequires in the module’s body, it
invokes the compile-time parts of the relevant modules.

In particular, the execution of the module transformer precedes the
execution of any of the indirection definitions in compiled typed
modules. The Typed Scheme module transformer can therefore set
a flag indicating that the module being compiled is a typed module,
and the indirection definitions can simply check the value of the
flag.

Here is the modifiedtyped-schememodule:

(modulecontext mzscheme
(provide typed-context?)
;; typed-context? : (box-of boolean)
;; True when the module beingcompiledis a typed module.
(definetyped-context?(box#f)))

(module typed-scheme mzscheme
omitted

(require-for-syntax context)
(define-syntax(module-begin stx)

(syntax-case stx()
[(module-beginform . . .)
(begin
(set-box! typed-context#t)
(type-check-module-body
(local-expand#’(#%plain-module-begin form . . .)

’module-begin
null)))]))

omitted)

The type-checkmodule also adds (require context) so that the
indirection definitions it inserts can refer totyped-context?.

The following program illustrate how the flag works. We add an
untypedmainmodule to theoneandplusmodules from our earlier
examples.

(moduleone typed-scheme
(provide one)
(define:one: number1))

(moduleplus typed-scheme
(require one)
(provide plus1)
(define: (plus1[x : number]) : number

(+ x one)))

(modulemain mzscheme
(require plus)
(display(plus141)) (newline))

The compiler processes the typedone module first, creating the
context-dependent indirection definition for the exported variable
one. When the compiler encounters the typedplus module, it
first invokes the compile-time part oftyped-scheme. That, in turn,
causes the invocation of thecontextmodule, including a newtyped-
context?box initialized to false. Executing the Typed Scheme

#%module-begin macro sets the value in thetyped-context?box
to true. Subsequently, when the compiler encounters the (require
one) form in the module body, it invokesone’s compile-time part.
Since thetyped-context?variable is set to true, the indirections
are set to the typed variants, and the compiler resolves uses of the
imported names to the unwrapped definitions.

The compilation of themain module proceeds differently. When
the compiler encounters the (require plus) form, it invokesplus’s
compile-time part, which invokestyped-scheme’s compile-time
part and invokescontext. This creates a freshtyped-context?
box initialized to false, just as before. The box’s value is never
changed to true, however, because Typed Scheme’s#%module-
begin macro is not used in the expansion of themain module.
Thus whenplus’s indirection definitions are executed, they point to
the contract-wrapped variants. Thus the occurrence ofplus1in the
mainmodule is wrapped in code to verify the type of its argument.

6. Related Work
Experiments with adding types to Scheme go back more than
twenty years. Wand’s Semantic Prototyping System [22] uses
macros to type-check implementations of denotational semantics.
Typed Scheme scales up the approach of SPS to a modern macro
and module system, and it improves the interaction between typed
and untyped code.

Flanagan’s static analyzer for DrScheme [12] analyzed expanded
programs and used syntax source information to display the anal-
ysis results in the program editor. The analyzer included a macro
protocol that let programmers annotate their programs with hints to
the analyzer. Meunier’s followup explored the use of type-imitating
contracts to modularize static analysis [18]. Rather than analyzing
the entire program, the analysis uses contracts placed at module
boundaries to approximate the imported values.

The Ziggurat project [11] has investigated alternate approaches
to static analysis and other program observations in the presence
of macros. Analyses in Ziggurat are implemented as methods on
expression nodes, and derived expression forms (that is, macros)
may either override analysis methods with special behavior or
defer to the default analysis of the macro’s expansion. Ziggurat
represents a new approach to defining macro protocols, and it
is as yet unclear how the Ziggurat approach compares with the
mechanisms described here.

References
[1] Eli Barzilay and John Clements. Laziness without all the hard work:

combining lazy and strict languages for teaching. InFDPE ’05:
Proceedings of the 2005 workshop on Functional and declarative
programming in education, pages 9–13, New York, NY, USA, 2005.
ACM Press.

[2] John Clements, Matthew Flatt, and Matthias Felleisen. Modeling
an algebraic stepper. InProc. 10th European Symposium on
Programming Languages and Systems, pages 320–334, 2001.

[3] John Clements, Paul T. Graunke, Shriram Krishnamurthi, and
Matthias Felleisen. Little languages and their programming
environments. InMonterey Workshop on Engineering Automation
for Software Intensive System Integration, pages 1–18, June 2001.

[4] William Clinger and Jonathan Rees. Macros that work. InACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 155–162, 1991.

[5] Ryan Culpepper, Scott Owens, and Matthew Flatt. Syntactic ab-
straction in component interfaces. InProc. Fourth International
Conference on Generative Programming and Component Engineer-
ing, pages 373–388, 2005.

[6] R. Kent Dybvig. Writing hygienic macros in scheme with syntax-
case. Technical Report TR 356, Indiana University, June 1992.

[7] R. Kent Dybvig, Robert Hieb, and Carl Bruggeman. Syntactic
abstraction in Scheme.Lisp and Symbolic Computation, 5(4):295–
326, December 1993.

[8] Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, and Shriram
Krishnamurthi. Building little languages with macros.Dr. Dobb’s
Journal, 2004.

[9] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-
order functions. InACM SIGPLAN International Conference on
Functional Programming, 2002.

[10] Robert Bruce Findler, Cormac Flanagan, Matthew Flatt, Shriram
Krishnamurthi, and Matthias Felleisen. DrScheme: A pedagogic
programming environment for Scheme. In Hugh Glaser, Pieter
Hartel, and Herbert Kuchen, editors,Programming Languages:
Implementations, Logics, and Programs, volume 1292 ofLNCS,
pages 369–388, Southampton, UK, September 1997. Springer.

[11] David Fisher and Olin Shivers. Static analysis for syntax objects. In
ACM SIGPLAN International Conference on Functional Program-
ming, 2006.

[12] Cormac Flanagan, Matthew Flatt, Shriram Krishnamurthi, Stephanie
Weirich, and Matthias Felleisen. Catching bugs in the web of program
invariants. InACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 23–32, May 1996.

[13] Matthew Flatt. Composable and compilable macros: you want it
when? InProc. Seventh ACM SIGPLAN International Conference on
Functional Programming, pages 72–83, 2002.

[14] Matthew Flatt. Algol 60 implementation, 2007. Available from
http://www.plt-scheme.org/.

[15] Erik Hilsdale and Daniel P. Friedman. Writing macros in
continuation-passing style. InScheme and Functional Program-
ming, 2000.

[16] Richard Kelsey, William Clinger, and Jonathan Rees (Editors).
Revised5 report of the algorithmic language Scheme.ACM SIGPLAN
Notices, 33(9):26–76, 1998.

[17] Eugene Kohlbecker, Daniel P. Friedman, Matthias Felleisen, and
Bruce Duba. Hygienic macro expansion. InProc. 1986 ACM
Conference on LISP and Functional Programming, pages 151–161,
1986.

[18] Philippe Meunier, Robby Findler, and Matthias Felleisen. Modular
set-based analysis from contracts. InACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, January 2006.

[19] Greg Pettyjohn, John Clements, Joe Marshall, Shriram Krishna-
murthi, and Matthias Felleisen. Continuations from generalized
stack inspection. InACM SIGPLAN International Conference on
Functional Programming, September 2005.

[20] Sam Tobin-Hochstadt. Typed Scheme.http://www.ccs.neu.
edu/~samth/typed-scheme.html, 2007.

[21] Sam Tobin-Hochstadt and Matthias Felleisen. Interlanguage
migration: from scripts to programs. InOOPSLA ’06: Companion to
the 21st ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, pages 964–974, New York, NY,
USA, 2006. ACM Press.

[22] Mitch Wand. A semantic prototyping system. InACM SIGPLAN
Symposium on Compiler Construction, 1984.

[23] Andrew Wright and Bruce Duba. Pattern matching for Scheme, 1995.
Unpublished manuscript.

